Experimental studies on the noise properties of the harmonics from a passively mode-locked Er-doped fiber laser

Journal article


Song, J., Hu, X., Wang, H., Duan, T., Wang, Y., Liu, Y. and Zhang, J. (2022). Experimental studies on the noise properties of the harmonics from a passively mode-locked Er-doped fiber laser. IEEE Photonics Journal. 11 (6). https://doi.org/10.1109/JPHOT.2019.2937324
AuthorsSong, J., Hu, X., Wang, H., Duan, T., Wang, Y., Liu, Y. and Zhang, J.
Abstract

We experimentally investigate the noise properties of a homemade 586 MHz mode-locked laser (MLL). The variation of the timing jitter versus the harmonic order is measured, which is consistent with the theoretical analyses. The dominant contributions to the timing jitter are detailedly studied by analyzing the phase noises at different harmonic frequencies. For low-order harmonics, the intensity noise and relative-intensity-noise-coupled (RIN-coupled) jitter mainly contribute to the timing jitter, while for high-order harmonics, the amplified spontaneous emission (ASE) noise makes the dominant contribution. Then we find that a higher output ratio has an obvious improvement on reducing the timing jitter and suppressing the phase noise because of the shorter pulse duration and lower net cavity dispersion caused by the higher output ratio. Finally a comparison of the noise performance between the MLL and a commercial signal generator is made, which shows that the optically generated radio-frequency signal (OGRFS) has a lower phase noise at high offset frequencies, however the higher phase noise at low offset frequencies leads to a higher timing jitter than the commercial SG.

KeywordsPassively mode-locked laser, timing jitter, phase noise.
Year2022
JournalIEEE Photonics Journal
Journal citation11 (6)
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
ISSN1943-0655
Digital Object Identifier (DOI)https://doi.org/10.1109/JPHOT.2019.2937324
Web address (URL)https://ieeexplore.ieee.org/document/8817934/authors#authors
Publication dates
PrintOct 2019
Publication process dates
Accepted21 Aug 2019
Deposited29 Nov 2022
Publisher's version
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/928z7

  • 4
    total views
  • 2
    total downloads
  • 0
    views this month
  • 1
    downloads this month

Export as

Related outputs

L-band mode-locked femtosecond fiber laser with gigahertz repetition rate
Song, J., Liu, Y. and Zhang, J. (2019). L-band mode-locked femtosecond fiber laser with gigahertz repetition rate. Applied Optics. 58 (27), pp. 7577-7581. https://doi.org/10.1364/AO.58.007577
All-polarization-maintaining, semiconductor saturable absorbing mirror mode-locked femtosecond Er-doped fiber laser with a gigahertz fundamental repetition rate
Song, J., Hu, X., Wang, H., Zhang, T., Wang, Y., Liu, Y. and Zhang, J. (2019). All-polarization-maintaining, semiconductor saturable absorbing mirror mode-locked femtosecond Er-doped fiber laser with a gigahertz fundamental repetition rate. 16 (9). https://doi.org/10.1088/1612-202X/ab3421
Compact low-noise passively mode-locked Er-doped femtosecond all-fiber laser with 2.68 GHz fundamental repetition rate
Song, J, Wang, H, Huang, X, Hu, X, Zhang, T, Wang, Y, Liu, Y and Zhang, J. (2019). Compact low-noise passively mode-locked Er-doped femtosecond all-fiber laser with 2.68 GHz fundamental repetition rate. Applied Optics. 58 (7), pp. 1733-1738. https://doi.org/10.1364/AO.58.001733
Optical waveform monitoring based on a free-running mode-locked femtosecond fibre laser and four-wave mixing in a highly nonlinear fibre
Zhang, J., Liu, Y and Tang, D (2016). Optical waveform monitoring based on a free-running mode-locked femtosecond fibre laser and four-wave mixing in a highly nonlinear fibre. Opto-Electronics Review. 24 (2), pp. 62-74. https://doi.org/10.1515/oere-2016-0010
All-optical NRZ-to-RZ format conversion at 10 Gbit/s with 1-to-4 wavelength multicasting exploiting cross-phase modulation & four-wave-mixing in single dispersion-flattened highly nonlinear photonic crystal fiber
Hui, ZQ, Zhang, B and Zhang, J. (2015). All-optical NRZ-to-RZ format conversion at 10 Gbit/s with 1-to-4 wavelength multicasting exploiting cross-phase modulation & four-wave-mixing in single dispersion-flattened highly nonlinear photonic crystal fiber. Journal of Modern Optics. 63 (8), pp. 724 - 734. https://doi.org/10.1080/09500340.2015.1094149