Compact low-noise passively mode-locked Er-doped femtosecond all-fiber laser with 2.68 GHz fundamental repetition rate

Journal article


Song, J, Wang, H, Huang, X, Hu, X, Zhang, T, Wang, Y, Liu, Y and Zhang, J. (2019). Compact low-noise passively mode-locked Er-doped femtosecond all-fiber laser with 2.68 GHz fundamental repetition rate. Applied Optics. 58 (7), pp. 1733-1738. https://doi.org/10.1364/AO.58.001733
AuthorsSong, J, Wang, H, Huang, X, Hu, X, Zhang, T, Wang, Y, Liu, Y and Zhang, J.
Abstract

© 2019 Optical Society of America. A passively mode-locked Er-doped fiber laser with a fundamental repetition rate of 2.68 GHz is reported. The oscillator operating at a central wavelength of 1558.35 nm has a compact, robust structure and low-noise performance. The timing jitter integrated from 30 MHz down to 300 Hz is 82.5 fs, and the timing jitter performance is analyzed based on the theory model. The amplification and compression of the high repetition rate optical pulses are also investigated. After a three-stage amplifier, the average power is boosted to 430 mW. Meanwhile, based on the nonlinear self-phase modulation effect, the spectral bandwidth is broadened from 7.56 to 19.2 nm, and the corresponding pulse width is compressed to 244 fs.

Year2019
JournalApplied Optics
Journal citation58 (7), pp. 1733-1738
PublisherOptical Society of America
ISSN1559-128X
Digital Object Identifier (DOI)https://doi.org/10.1364/AO.58.001733
Web address (URL)https://www.osapublishing.org/ao/abstract.cfm?uri=ao-58-7-1733
Publication dates
Print01 Mar 2019
Publication process dates
Deposited08 May 2019
Accepted01 Mar 2019
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/86778

Download files


Accepted author manuscript
J Song-Applied Optics-354774.pdf
License: CC BY-NC 4.0
File access level: Open

  • 76
    total views
  • 365
    total downloads
  • 1
    views this month
  • 4
    downloads this month

Export as

Related outputs

Use of video technology to enhance telemedicine applications
Zhang, J. (2021). Use of video technology to enhance telemedicine applications. International Journal of Biosensors & Bioelectronics. 7 (2), pp. 30-34. https://doi.org/DOI:10.15406/ijbsbe.2021.07.00208
The Role of Video Technology in Telemedicine
Zhang, J-G. (2021). The Role of Video Technology in Telemedicine. International Conference on Integrated Emerging Methods of Artificial Intelligence and Cloud Computing (IEMAICLOUD 2021) . London, UK 26 - 29 Apr 2021
Ultrahigh-precision measurement of timing jitter based on self-reference source
Xu, P., Liu, Y-S. and Zhang, J. (2020). Ultrahigh-precision measurement of timing jitter based on self-reference source. Optics and Precision Engineering. 28 (11), pp. 2429-2436. https://doi.org/10.37188/OPE.20202811.2429
Experimental studies on the noise properties of the harmonics from a passively mode-locked Er-doped fiber laser
Song, J., Hu, X., Wang, H., Duan, T., Wang, Y., Liu, Y. and Zhang, J. (2019). Experimental studies on the noise properties of the harmonics from a passively mode-locked Er-doped fiber laser. IEEE Photonics Journal. 11 (6). https://doi.org/10.1109/JPHOT.2019.2937324
L-band mode-locked femtosecond fiber laser with gigahertz repetition rate
Song, J., Liu, Y. and Zhang, J. (2019). L-band mode-locked femtosecond fiber laser with gigahertz repetition rate. Applied Optics. 58 (27), pp. 7577-7581. https://doi.org/10.1364/AO.58.007577
All-polarization-maintaining, semiconductor saturable absorbing mirror mode-locked femtosecond Er-doped fiber laser with a gigahertz fundamental repetition rate
Song, J., Hu, X., Wang, H., Zhang, T., Wang, Y., Liu, Y. and Zhang, J. (2019). All-polarization-maintaining, semiconductor saturable absorbing mirror mode-locked femtosecond Er-doped fiber laser with a gigahertz fundamental repetition rate. Laser Physics Letters. 16 (9). https://doi.org/10.1088/1612-202X/ab3421
Optical waveform monitoring based on a free-running mode-locked femtosecond fibre laser and four-wave mixing in a highly nonlinear fibre
Zhang, J., Liu, Y and Tang, D (2016). Optical waveform monitoring based on a free-running mode-locked femtosecond fibre laser and four-wave mixing in a highly nonlinear fibre. Opto-Electronics Review. 24 (2), pp. 62-74. https://doi.org/10.1515/oere-2016-0010
Design of optical time-division multiplexed systems using the cascaded four-wave mixing in a highly nonlinear photonic crystal fiber for simultaneous time demultiplexing and wavelength multicasting
Hui, Z-Q. and Zhang, J. (2015). Design of optical time-division multiplexed systems using the cascaded four-wave mixing in a highly nonlinear photonic crystal fiber for simultaneous time demultiplexing and wavelength multicasting. Journal of Optics. 17 (7), p. 075702. https://doi.org/10.1088/2040-8978/17/7/075702
All-optical NRZ-to-RZ format conversion at 10 Gbit/s with 1-to-4 wavelength multicasting exploiting cross-phase modulation & four-wave-mixing in single dispersion-flattened highly nonlinear photonic crystal fiber
Hui, ZQ, Zhang, B and Zhang, J. (2015). All-optical NRZ-to-RZ format conversion at 10 Gbit/s with 1-to-4 wavelength multicasting exploiting cross-phase modulation & four-wave-mixing in single dispersion-flattened highly nonlinear photonic crystal fiber. Journal of Modern Optics. 63 (8), pp. 724 - 734. https://doi.org/10.1080/09500340.2015.1094149
Investigation on wavelength multicasting technology based on XPM in a highly nonlinear fiber
Wang, M. and Zhang, J. (2014). Investigation on wavelength multicasting technology based on XPM in a highly nonlinear fiber. Journal of Modern Optics. 61 (13), pp. 1039 - 1046. https://doi.org/10.1080/09500340.2014.922631
Demonstration of 100 Gbit/s optical time-division demultiplexing with 1-to-4 wavelength multicasting using the cascaded four-wave mixing in photonic crystal fiber with a single control light source
Hui, Z. and Zhang, J. (2014). Demonstration of 100 Gbit/s optical time-division demultiplexing with 1-to-4 wavelength multicasting using the cascaded four-wave mixing in photonic crystal fiber with a single control light source. Microwave and Optical Technology Letters. 56 (10), pp. 2330 - 2335. https://doi.org/10.1002/mop.28585