Design of optical time-division multiplexed systems using the cascaded four-wave mixing in a highly nonlinear photonic crystal fiber for simultaneous time demultiplexing and wavelength multicasting

Journal article


Hui, Z-Q. and Zhang, J. (2015). Design of optical time-division multiplexed systems using the cascaded four-wave mixing in a highly nonlinear photonic crystal fiber for simultaneous time demultiplexing and wavelength multicasting. Journal of Optics. 17 (7), p. 075702. https://doi.org/10.1088/2040-8978/17/7/075702
AuthorsHui, Z-Q. and Zhang, J.
Abstract

This paper reports a new design of optical time-division multiplexed (OTDM) systems that possess a functionality of simultaneous time demultiplexing and wavelength multicasting based on the cascaded four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber (DF-HNL-PCF). A module of OTDM demultiplexing and wavelength multicasting can be feasibly implemented by using a 3 dB optical coupler, a high-power erbium-doped fiber amplifier, a short-length DF-HNL-PCF, and a wavelength demultiplexer in the simple configuration. We also carry out an experiment on the proposed system to demonstrate the 100–10 Gbit s−1 OTDM demultiplexing with wavelength conversion simultaneously at 4 multicast wavelengths. It is shown that error-free wavelength multicasting is achieved on two wavelength channels with the minimum power penalty of 3.2 dB relative to the 10 Gbit s−1 back-to-back measurement, whereas the bit error rates of other two multicasting channels are measured to be about 10−6–10−5. Moreover, we propose the use of a proper error-correcting code to improve the multicasting performance of such an OTDM system, and our work reveals that the resulting system can theoretically support error-free multicasting of the OTDM-demultiplexed signal on four wavelength channels.

KeywordsOptical fiber communications, optical time-division multiplexing, wavelength multicasting, four-wave mixing, photonic crystal fiber, error-correcting code, optical nonlinearity
Year2015
JournalJournal of Optics
Journal citation17 (7), p. 075702
PublisherIOP Publishing
ISSN2040-8986
2040-8978
Digital Object Identifier (DOI)https://doi.org/10.1088/2040-8978/17/7/075702
Web address (URL)https://iopscience.iop.org/article/10.1088/2040-8978/17/7/075702
Publication dates
Print03 Jul 2015
Publication process dates
Deposited14 Feb 2022
Accepted author manuscript
License
File Access Level
Open
Additional information

This is an author-created, un-copyedited version of an article accepted for publication/published in Journal of Optics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/2040-8978/17/7/075702.

Permalink -

https://openresearch.lsbu.ac.uk/item/8x512

  • 16
    total views
  • 7
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Use of video technology to enhance telemedicine applications
Zhang, J. (2021). Use of video technology to enhance telemedicine applications. International Journal of Biosensors & Bioelectronics. 7 (2), pp. 30-34. https://doi.org/DOI:10.15406/ijbsbe.2021.07.00208
The Role of Video Technology in Telemedicine
Zhang, J-G. (2021). The Role of Video Technology in Telemedicine. International Conference on Integrated Emerging Methods of Artificial Intelligence and Cloud Computing (IEMAICLOUD 2021) . London, UK 26 - 29 Apr 2021
Ultrahigh-precision measurement of timing jitter based on self-reference source
Xu, P., Liu, Y-S. and Zhang, J. (2020). Ultrahigh-precision measurement of timing jitter based on self-reference source. Optics and Precision Engineering. 28 (11), pp. 2429-2436. https://doi.org/10.37188/OPE.20202811.2429
Experimental studies on the noise properties of the harmonics from a passively mode-locked Er-doped fiber laser
Song, J., Hu, X., Wang, H., Duan, T., Wang, Y., Liu, Y. and Zhang, J. (2019). Experimental studies on the noise properties of the harmonics from a passively mode-locked Er-doped fiber laser. IEEE Photonics Journal. 11 (6). https://doi.org/10.1109/JPHOT.2019.2937324
L-band mode-locked femtosecond fiber laser with gigahertz repetition rate
Song, J., Liu, Y. and Zhang, J. (2019). L-band mode-locked femtosecond fiber laser with gigahertz repetition rate. Applied Optics. 58 (27), pp. 7577-7581. https://doi.org/10.1364/AO.58.007577
All-polarization-maintaining, semiconductor saturable absorbing mirror mode-locked femtosecond Er-doped fiber laser with a gigahertz fundamental repetition rate
Song, J., Hu, X., Wang, H., Zhang, T., Wang, Y., Liu, Y. and Zhang, J. (2019). All-polarization-maintaining, semiconductor saturable absorbing mirror mode-locked femtosecond Er-doped fiber laser with a gigahertz fundamental repetition rate. Laser Physics Letters. 16 (9). https://doi.org/10.1088/1612-202X/ab3421
Compact low-noise passively mode-locked Er-doped femtosecond all-fiber laser with 2.68 GHz fundamental repetition rate
Song, J, Wang, H, Huang, X, Hu, X, Zhang, T, Wang, Y, Liu, Y and Zhang, J. (2019). Compact low-noise passively mode-locked Er-doped femtosecond all-fiber laser with 2.68 GHz fundamental repetition rate. Applied Optics. 58 (7), pp. 1733-1738. https://doi.org/10.1364/AO.58.001733
Optical waveform monitoring based on a free-running mode-locked femtosecond fibre laser and four-wave mixing in a highly nonlinear fibre
Zhang, J., Liu, Y and Tang, D (2016). Optical waveform monitoring based on a free-running mode-locked femtosecond fibre laser and four-wave mixing in a highly nonlinear fibre. Opto-Electronics Review. 24 (2), pp. 62-74. https://doi.org/10.1515/oere-2016-0010
All-optical NRZ-to-RZ format conversion at 10 Gbit/s with 1-to-4 wavelength multicasting exploiting cross-phase modulation & four-wave-mixing in single dispersion-flattened highly nonlinear photonic crystal fiber
Hui, ZQ, Zhang, B and Zhang, J. (2015). All-optical NRZ-to-RZ format conversion at 10 Gbit/s with 1-to-4 wavelength multicasting exploiting cross-phase modulation & four-wave-mixing in single dispersion-flattened highly nonlinear photonic crystal fiber. Journal of Modern Optics. 63 (8), pp. 724 - 734. https://doi.org/10.1080/09500340.2015.1094149
Investigation on wavelength multicasting technology based on XPM in a highly nonlinear fiber
Wang, M. and Zhang, J. (2014). Investigation on wavelength multicasting technology based on XPM in a highly nonlinear fiber. Journal of Modern Optics. 61 (13), pp. 1039 - 1046. https://doi.org/10.1080/09500340.2014.922631
Demonstration of 100 Gbit/s optical time-division demultiplexing with 1-to-4 wavelength multicasting using the cascaded four-wave mixing in photonic crystal fiber with a single control light source
Hui, Z. and Zhang, J. (2014). Demonstration of 100 Gbit/s optical time-division demultiplexing with 1-to-4 wavelength multicasting using the cascaded four-wave mixing in photonic crystal fiber with a single control light source. Microwave and Optical Technology Letters. 56 (10), pp. 2330 - 2335. https://doi.org/10.1002/mop.28585