L-band mode-locked femtosecond fiber laser with gigahertz repetition rate

Journal article


Song, J., Liu, Y. and Zhang, J. (2019). L-band mode-locked femtosecond fiber laser with gigahertz repetition rate. Applied Optics. 58 (27), pp. 7577-7581. https://doi.org/10.1364/AO.58.007577
AuthorsSong, J., Liu, Y. and Zhang, J.
Abstract

We demonstrate an L-band passively mode-locked femtosecond fiber laser with a fundamental repetition rate of 1.013 GHz based on a semiconductor saturable absorber mirror. Compared with other reported L-band fiber lasers that use overlong Er-doped fiber, the laser here consists of 10 cm heavily doped fiber to increase the fundamental pulse repetition rate to gigahertz level. An output ratio as low as 0.2% is used to make the central wavelength up to 1.6 μm. The laser operates at the soliton regime with a 3 dB spectral bandwidth of 13.6 nm and a pulse duration of 229 fs.

Year2019
JournalApplied Optics
Journal citation58 (27), pp. 7577-7581
PublisherOptical Society of America
Digital Object Identifier (DOI)https://doi.org/10.1364/AO.58.007577
Publication dates
Online20 Sep 2019
Publication process dates
Deposited24 Oct 2019
Accepted22 Aug 2019
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/88486

Download files


Accepted author manuscript
366708.pdf
License: CC BY-NC 4.0
File access level: Open

  • 63
    total views
  • 228
    total downloads
  • 1
    views this month
  • 3
    downloads this month

Export as

Related outputs

Use of video technology to enhance telemedicine applications
Zhang, J. (2021). Use of video technology to enhance telemedicine applications. International Journal of Biosensors & Bioelectronics. 7 (2), pp. 30-34. https://doi.org/DOI:10.15406/ijbsbe.2021.07.00208
The Role of Video Technology in Telemedicine
Zhang, J-G. (2021). The Role of Video Technology in Telemedicine. International Conference on Integrated Emerging Methods of Artificial Intelligence and Cloud Computing (IEMAICLOUD 2021) . London, UK 26 - 29 Apr 2021
Ultrahigh-precision measurement of timing jitter based on self-reference source
Xu, P., Liu, Y-S. and Zhang, J. (2020). Ultrahigh-precision measurement of timing jitter based on self-reference source. Optics and Precision Engineering. 28 (11), pp. 2429-2436. https://doi.org/10.37188/OPE.20202811.2429
Experimental studies on the noise properties of the harmonics from a passively mode-locked Er-doped fiber laser
Song, J., Hu, X., Wang, H., Duan, T., Wang, Y., Liu, Y. and Zhang, J. (2019). Experimental studies on the noise properties of the harmonics from a passively mode-locked Er-doped fiber laser. IEEE Photonics Journal. 11 (6). https://doi.org/10.1109/JPHOT.2019.2937324
All-polarization-maintaining, semiconductor saturable absorbing mirror mode-locked femtosecond Er-doped fiber laser with a gigahertz fundamental repetition rate
Song, J., Hu, X., Wang, H., Zhang, T., Wang, Y., Liu, Y. and Zhang, J. (2019). All-polarization-maintaining, semiconductor saturable absorbing mirror mode-locked femtosecond Er-doped fiber laser with a gigahertz fundamental repetition rate. Laser Physics Letters. 16 (9). https://doi.org/10.1088/1612-202X/ab3421
Compact low-noise passively mode-locked Er-doped femtosecond all-fiber laser with 2.68 GHz fundamental repetition rate
Song, J, Wang, H, Huang, X, Hu, X, Zhang, T, Wang, Y, Liu, Y and Zhang, J. (2019). Compact low-noise passively mode-locked Er-doped femtosecond all-fiber laser with 2.68 GHz fundamental repetition rate. Applied Optics. 58 (7), pp. 1733-1738. https://doi.org/10.1364/AO.58.001733
Optical waveform monitoring based on a free-running mode-locked femtosecond fibre laser and four-wave mixing in a highly nonlinear fibre
Zhang, J., Liu, Y and Tang, D (2016). Optical waveform monitoring based on a free-running mode-locked femtosecond fibre laser and four-wave mixing in a highly nonlinear fibre. Opto-Electronics Review. 24 (2), pp. 62-74. https://doi.org/10.1515/oere-2016-0010
Design of optical time-division multiplexed systems using the cascaded four-wave mixing in a highly nonlinear photonic crystal fiber for simultaneous time demultiplexing and wavelength multicasting
Hui, Z-Q. and Zhang, J. (2015). Design of optical time-division multiplexed systems using the cascaded four-wave mixing in a highly nonlinear photonic crystal fiber for simultaneous time demultiplexing and wavelength multicasting. Journal of Optics. 17 (7), p. 075702. https://doi.org/10.1088/2040-8978/17/7/075702
All-optical NRZ-to-RZ format conversion at 10 Gbit/s with 1-to-4 wavelength multicasting exploiting cross-phase modulation & four-wave-mixing in single dispersion-flattened highly nonlinear photonic crystal fiber
Hui, ZQ, Zhang, B and Zhang, J. (2015). All-optical NRZ-to-RZ format conversion at 10 Gbit/s with 1-to-4 wavelength multicasting exploiting cross-phase modulation & four-wave-mixing in single dispersion-flattened highly nonlinear photonic crystal fiber. Journal of Modern Optics. 63 (8), pp. 724 - 734. https://doi.org/10.1080/09500340.2015.1094149
Investigation on wavelength multicasting technology based on XPM in a highly nonlinear fiber
Wang, M. and Zhang, J. (2014). Investigation on wavelength multicasting technology based on XPM in a highly nonlinear fiber. Journal of Modern Optics. 61 (13), pp. 1039 - 1046. https://doi.org/10.1080/09500340.2014.922631
Demonstration of 100 Gbit/s optical time-division demultiplexing with 1-to-4 wavelength multicasting using the cascaded four-wave mixing in photonic crystal fiber with a single control light source
Hui, Z. and Zhang, J. (2014). Demonstration of 100 Gbit/s optical time-division demultiplexing with 1-to-4 wavelength multicasting using the cascaded four-wave mixing in photonic crystal fiber with a single control light source. Microwave and Optical Technology Letters. 56 (10), pp. 2330 - 2335. https://doi.org/10.1002/mop.28585