Ultrahigh-precision measurement of timing jitter based on self-reference source

Journal article


Xu, P., Liu, Y-S. and Zhang, J. (2020). Ultrahigh-precision measurement of timing jitter based on self-reference source. Optics and Precision Engineering. 28 (11), pp. 2429-2436. https://doi.org/10.37188/OPE.20202811.2429
AuthorsXu, P., Liu, Y-S. and Zhang, J.
Abstract

Timing jitter is a key parameter of low-noise systems, including optical frequency combs and low-noise laser microwave photon radar systems. Consequently, precisely measuring its values is quite important. The traditional direct detection method is limited by the floor noise of the microwave oscillator or photodetector noise, and its measurement accuracy is relatively low. Optical measuring methods, such as optical heterodyne and optical cross-correlation methods, are very complicated and have relatively high requirements on both reference and measured sources. This study presents a method to measure timing jitter with high precision without using a reference source, thereby overcoming some deficiencies of traditional methods. Based on long fiber delay line technology and optical carrier frequency interference, an attempt is made to realize ultra-high precision for measuring timing jitter. Results from the simulated system show that the noise base of a 10-MHz laser is 3.29×10 -13 fs2/Hz (equivalent to -211 dBc/Hz) when the frequency deviation is 100 MHz at its 100th power harmonic point 10 GHz, and the total root mean square timing jitter from 10 kHz to 10 MHz is 535 as, which has an obvious advantage for ultra-low timing jitter measurement. This measurement method is a convenient, high-efficiency method that can be applied to different measured sources, such as passively mode-locked lasers, optical frequency combs, and super-continuum spectra.

KeywordsTiming jitter; mode-locked laser; optical fiber; optical heterodyne; frequency domain analysis
Year2020
JournalOptics and Precision Engineering
Journal citation28 (11), pp. 2429-2436
PublisherChangchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
ISSN1004-924X
Digital Object Identifier (DOI)https://doi.org/10.37188/OPE.20202811.2429
Web address (URL)https://ope.lightpublishing.cn/homeNav/gxjm/zh/
Publication dates
PrintNov 2020
Publication process dates
Accepted31 Mar 2020
Deposited03 Feb 2023
Accepted author manuscript
License
File Access Level
Open
Additional information

Alternative journal title: 光学 精密工程, Guangxue jingmi gongcheng.

Permalink -

https://openresearch.lsbu.ac.uk/item/928z8

Download files


Accepted author manuscript
  • 19
    total views
  • 140
    total downloads
  • 2
    views this month
  • 82
    downloads this month

Export as

Related outputs

Use of video technology to enhance telemedicine applications
Zhang, J. (2021). Use of video technology to enhance telemedicine applications. International Journal of Biosensors & Bioelectronics. 7 (2), pp. 30-34. https://doi.org/DOI:10.15406/ijbsbe.2021.07.00208
The Role of Video Technology in Telemedicine
Zhang, J-G. (2021). The Role of Video Technology in Telemedicine. International Conference on Integrated Emerging Methods of Artificial Intelligence and Cloud Computing (IEMAICLOUD 2021) . London, UK 26 - 29 Apr 2021
Experimental studies on the noise properties of the harmonics from a passively mode-locked Er-doped fiber laser
Song, J., Hu, X., Wang, H., Duan, T., Wang, Y., Liu, Y. and Zhang, J. (2019). Experimental studies on the noise properties of the harmonics from a passively mode-locked Er-doped fiber laser. IEEE Photonics Journal. 11 (6). https://doi.org/10.1109/JPHOT.2019.2937324
L-band mode-locked femtosecond fiber laser with gigahertz repetition rate
Song, J., Liu, Y. and Zhang, J. (2019). L-band mode-locked femtosecond fiber laser with gigahertz repetition rate. Applied Optics. 58 (27), pp. 7577-7581. https://doi.org/10.1364/AO.58.007577
All-polarization-maintaining, semiconductor saturable absorbing mirror mode-locked femtosecond Er-doped fiber laser with a gigahertz fundamental repetition rate
Song, J., Hu, X., Wang, H., Zhang, T., Wang, Y., Liu, Y. and Zhang, J. (2019). All-polarization-maintaining, semiconductor saturable absorbing mirror mode-locked femtosecond Er-doped fiber laser with a gigahertz fundamental repetition rate. Laser Physics Letters. 16 (9). https://doi.org/10.1088/1612-202X/ab3421
Compact low-noise passively mode-locked Er-doped femtosecond all-fiber laser with 2.68 GHz fundamental repetition rate
Song, J, Wang, H, Huang, X, Hu, X, Zhang, T, Wang, Y, Liu, Y and Zhang, J. (2019). Compact low-noise passively mode-locked Er-doped femtosecond all-fiber laser with 2.68 GHz fundamental repetition rate. Applied Optics. 58 (7), pp. 1733-1738. https://doi.org/10.1364/AO.58.001733
Optical waveform monitoring based on a free-running mode-locked femtosecond fibre laser and four-wave mixing in a highly nonlinear fibre
Zhang, J., Liu, Y and Tang, D (2016). Optical waveform monitoring based on a free-running mode-locked femtosecond fibre laser and four-wave mixing in a highly nonlinear fibre. Opto-Electronics Review. 24 (2), pp. 62-74. https://doi.org/10.1515/oere-2016-0010
Design of optical time-division multiplexed systems using the cascaded four-wave mixing in a highly nonlinear photonic crystal fiber for simultaneous time demultiplexing and wavelength multicasting
Hui, Z-Q. and Zhang, J. (2015). Design of optical time-division multiplexed systems using the cascaded four-wave mixing in a highly nonlinear photonic crystal fiber for simultaneous time demultiplexing and wavelength multicasting. Journal of Optics. 17 (7), p. 075702. https://doi.org/10.1088/2040-8978/17/7/075702
All-optical NRZ-to-RZ format conversion at 10 Gbit/s with 1-to-4 wavelength multicasting exploiting cross-phase modulation & four-wave-mixing in single dispersion-flattened highly nonlinear photonic crystal fiber
Hui, ZQ, Zhang, B and Zhang, J. (2015). All-optical NRZ-to-RZ format conversion at 10 Gbit/s with 1-to-4 wavelength multicasting exploiting cross-phase modulation & four-wave-mixing in single dispersion-flattened highly nonlinear photonic crystal fiber. Journal of Modern Optics. 63 (8), pp. 724 - 734. https://doi.org/10.1080/09500340.2015.1094149
Investigation on wavelength multicasting technology based on XPM in a highly nonlinear fiber
Wang, M. and Zhang, J. (2014). Investigation on wavelength multicasting technology based on XPM in a highly nonlinear fiber. Journal of Modern Optics. 61 (13), pp. 1039 - 1046. https://doi.org/10.1080/09500340.2014.922631
Demonstration of 100 Gbit/s optical time-division demultiplexing with 1-to-4 wavelength multicasting using the cascaded four-wave mixing in photonic crystal fiber with a single control light source
Hui, Z. and Zhang, J. (2014). Demonstration of 100 Gbit/s optical time-division demultiplexing with 1-to-4 wavelength multicasting using the cascaded four-wave mixing in photonic crystal fiber with a single control light source. Microwave and Optical Technology Letters. 56 (10), pp. 2330 - 2335. https://doi.org/10.1002/mop.28585