Performance Comparison of Recent Population-based Metaheuristic Optimisation Algorithms in Mechanical Design Problems of Machinery Components

Journal article


Alkan, B. and Chinnathai, M.K. (2021). Performance Comparison of Recent Population-based Metaheuristic Optimisation Algorithms in Mechanical Design Problems of Machinery Components. MDPI Machines. 9 (12), p. 341.
AuthorsAlkan, B. and Chinnathai, M.K.
Abstract

The optimisation of complex engineering design problems is highly challenging due to the consideration of various design variables. To obtain acceptable near-optimal solutions within reasonable computation time, metaheuristics can be employed for such problems. However, a plethora of novel metaheuristic algorithms are developed and constantly improved and hence it is important to evaluate the applicability of the novel optimisation strategies and compare their performance using real-world engineering design problems. Therefore, in this paper, eight recent population-based metaheuristic optimisation algorithms such as: African Vultures Optimisation Algorithm (AVOA), Crystal Structure Algorithm (CryStAl), Human-Behaviour Based Optimisation (HBBO), Gradient-Based Optimiser (GBO), Gorilla Troops Optimiser (GTO), RUNge kutta optimiser (RUN) , Social Network Search (SNS) and Sparrow Search Algorithm (SSA) are applied to five different mechanical component design problems and their performance on such problems are compared. The results show that the SNS algorithm is consistent, robust and provides better quality solutions at a relatively fast computation time for the considered design problems. GTO and GBO also show comparable performance across the considered problems and AVOA is the most efficient in terms of computation time.

KeywordsMechanical design; Component design; Product design; Metaheuristics; Artificial intelligence; Benchmark; Soft computing; Evolutionary intelligence; Swarm intelligence
Year2021
JournalMDPI Machines
Journal citation9 (12), p. 341
PublisherMDPI
Publication dates
Print08 Dec 2021
Publication process dates
Accepted07 Dec 2021
Deposited08 Dec 2021
Publisher's version
License
File Access Level
Open
Accepted author manuscript
License
File Access Level
Controlled
Permalink -

https://openresearch.lsbu.ac.uk/item/8yx7q

Download files


Publisher's version
machines-09-00341-v2.pdf
License: CC BY 4.0
File access level: Open

  • 16
    total views
  • 2
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

A Hybrid Extreme Learning Machine Model with Harris Hawks Optimisation Algorithm: An Optimised Model for Product Demand Forecasting Applications
Chaudhuri, K. D. and Alkan, B. (2022). A Hybrid Extreme Learning Machine Model with Harris Hawks Optimisation Algorithm: An Optimised Model for Product Demand Forecasting Applications. Applied Intelligence.
A novel data-driven approach to support decision-making during production scale-up of assembly systems
Alkan, B. (2021). A novel data-driven approach to support decision-making during production scale-up of assembly systems. Journal of Manufacturing Systems. 59, pp. 577-595. https://doi.org/10.1016/j.jmsy.2021.03.018
Identifying Optimal Granularity Level of Modular Assembly Supply Chains based on Complexity-Modularity Trade-off
Alkan, B., Bullock, S. and Galvin, K. (2021). Identifying Optimal Granularity Level of Modular Assembly Supply Chains based on Complexity-Modularity Trade-off. IEEE Access. 9, pp. 57907 - 57921. https://doi.org/10.1109/access.2021.3072955
Identifying Optimal Granularity Level of Modular Assembly Supply Chains Based on Complexity-Modularity Trade-Off
Alkan, B., Bullock, S. and Galvin, K. (2021). Identifying Optimal Granularity Level of Modular Assembly Supply Chains Based on Complexity-Modularity Trade-Off. IEEE Access. 9, pp. 57907 - 57921. https://doi.org/10.1109/ACCESS.2021.3072955
Assessing operational complexity of manufacturing systems based on algorithmic complexity of key performance indicator time-series
Alkan, B. and Bullock, S. (2020). Assessing operational complexity of manufacturing systems based on algorithmic complexity of key performance indicator time-series. Journal of the Operational Research Society. https://doi.org/10.1080/01605682.2020.1779622
A Design Process Framework to Deal with Non-functional Requirements in Conceptual System Designs
Alkan, B., Seth, B., Galvin, K. and Johnson, A. (2020). A Design Process Framework to Deal with Non-functional Requirements in Conceptual System Designs. Complex Systems Design & Management. Paris 15 - 17 Dec 2020
Improving just-in-time delivery performance of IoT-enabled flexible manufacturing systems with AGV based material transportation
Yao, F, Alkan, B, Ahmad, B and Harrison, R (2020). Improving just-in-time delivery performance of IoT-enabled flexible manufacturing systems with AGV based material transportation. Sensors (Switzerland). 20 (21), pp. 1-25. https://doi.org/10.3390/s20216333
A framework to predict energy related key performance indicators of manufacturing systems at early design phase
Assad, F, Alkan, B, Chinnathai, MK, Ahmad, MH, Rushforth, EJ and Harrison, R (2019). A framework to predict energy related key performance indicators of manufacturing systems at early design phase. Procedia CIRP. 81, pp. 145-150. https://doi.org/10.1016/j.procir.2019.03.026
A Framework for Pilot Line Scale-up using Digital Manufacturing
Chinnathai, M. K., Al-Mowafy, Z., Alkan, B., Vera, D. and Harrison, R. (2019). A Framework for Pilot Line Scale-up using Digital Manufacturing. Procedia CIRP. 81, pp. 962-967. https://doi.org/10.1016/j.procir.2019.03.235
An experimental investigation on the relationship between perceived assembly complexity and product design complexity
Alkan, B. (2019). An experimental investigation on the relationship between perceived assembly complexity and product design complexity. International Journal on Interactive Design and Manufacturing (IJIDeM). 13 (3), pp. 1145-1157. https://doi.org/10.1007/s12008-019-00556-9
A virtual engineering based approach to verify structural complexity of component-based automation systems in early design phase
Alkan, B. and Harrison, R. (2019). A virtual engineering based approach to verify structural complexity of component-based automation systems in early design phase. Journal of Manufacturing Systems. 53, pp. 18-31. https://doi.org/10.1016/j.jmsy.2019.09.001
Pilot To Full-Scale Production: A Battery Module Assembly Case Study
Chinnathai, M.K., Alkan, B., Vera, D. and Harrison, R. (2018). Pilot To Full-Scale Production: A Battery Module Assembly Case Study. Procedia CIRP. 72, pp. 796-801. https://doi.org/10.1016/j.procir.2018.03.194
Proposing a Holistic Framework for the Assessment and Management of Manufacturing Complexity through Data-centric and Human-centric Approaches
Alkan, B. (2018). Proposing a Holistic Framework for the Assessment and Management of Manufacturing Complexity through Data-centric and Human-centric Approaches. Proceedings of the 3rd International Conference on Complexity, Future Information Systems and Risk (COMPLEXIS 2018).
Complexity in manufacturing systems and its measures: a literature review
Alkan, B., Vera, D., Ahmad, M., Ahmad, B. and Harrison, R. (2018). Complexity in manufacturing systems and its measures: a literature review. European Journal of Industrial Engineering . 12 (1). https://doi.org/10.1504/EJIE.2018.089883
Convertibility Evaluation of Automated Assembly System Designs for High Variety Production
Chinnathai, M.K., Alkan, B. and Harrison, R. (2017). Convertibility Evaluation of Automated Assembly System Designs for High Variety Production. Elsevier BV. https://doi.org/10.1016/j.procir.2017.01.005
Assessing Complexity of Component-Based Control Architectures Used in Modular Automation Systems
Alkan, B., Vera, D., Chinnathai, M. K. and Harrison, R. (2017). Assessing Complexity of Component-Based Control Architectures Used in Modular Automation Systems . International Journal of Computer and Electrical Engineering . 9 (1). https://doi.org/10.17706/ijcee.2017.9.1.393-402
A method to assess assembly complexity of industrial products in early design phase
Alkan, B., Vera, D., Ahmad, B. and Harrison, R. (2017). A method to assess assembly complexity of industrial products in early design phase. IEEE Access. 6, pp. 989-999. https://doi.org/10.1109/ACCESS.2017.2777406
A Framework for Automatically Realizing Assembly Sequence Changes in a Virtual Manufacturing Environment
Ahmad, M, Ahmad, B, Harrison, R, Alkan, B, Vera, D, Meredith, J and Bindel, A (2016). A Framework for Automatically Realizing Assembly Sequence Changes in a Virtual Manufacturing Environment. Elsevier BV. https://doi.org/10.1016/j.procir.2016.04.178
A Lightweight Approach for Human Factor Assessment in Virtual Assembly Designs: An Evaluation Model for Postural Risk and Metabolic Workload
Alkan, B, Vera, D, Ahmad, M, Ahmad, B and Harrison, R (2016). A Lightweight Approach for Human Factor Assessment in Virtual Assembly Designs: An Evaluation Model for Postural Risk and Metabolic Workload. Elsevier BV. https://doi.org/10.1016/j.procir.2016.02.115
A Model for Complexity Assessment in Manual Assembly Operations Through Predetermined Motion Time Systems
Alkan, B, Vera, D, Ahmad, M, Ahmad, B and Harrison, R (2016). A Model for Complexity Assessment in Manual Assembly Operations Through Predetermined Motion Time Systems. Procedia CIRP. 44, pp. 429-434. https://doi.org/10.1016/j.procir.2016.02.111
Hydrogen Fuel Cell Pick and Place Assembly Systems: Heuristic Evaluation of Reconfigurability and Suitability
Ahmad, M., Ahmad, B., Alkan, B., Vera, D., Harrison, R., Meredith, J. and Bindel, A. (2016). Hydrogen Fuel Cell Pick and Place Assembly Systems: Heuristic Evaluation of Reconfigurability and Suitability. Procedia CIRP. 57, pp. 428-433. https://doi.org/10.1016/j.procir.2016.11.074
The Use of a Complexity Model to Facilitate in the Selection of a Fuel Cell Assembly Sequence
Ahmad, M., Alkan, B., Ahman, B., Vera, D., Harrison, R., Meredith, J. and Bindel, A. (2016). The Use of a Complexity Model to Facilitate in the Selection of a Fuel Cell Assembly Sequence. Procedia CIRP. 44, pp. 169-174. https://doi.org/10.1016/j.procir.2016.02.054
Design Evaluation of Automated Manufacturing Processes Based on Complexity of Control Logic
Alkan, B., Vera, D., Ahmad, M., Ahmad, B. and Harrison, R. (2016). Design Evaluation of Automated Manufacturing Processes Based on Complexity of Control Logic. Procedia CIRP. 50, pp. 141-146. https://doi.org/10.1016/j.procir.2016.05.031