Identifying Optimal Granularity Level of Modular Assembly Supply Chains Based on Complexity-Modularity Trade-Off

Journal article


Alkan, B., Bullock, S. and Galvin, K. (2021). Identifying Optimal Granularity Level of Modular Assembly Supply Chains Based on Complexity-Modularity Trade-Off. IEEE Access. 9, pp. 57907 - 57921. https://doi.org/10.1109/ACCESS.2021.3072955
AuthorsAlkan, B., Bullock, S. and Galvin, K.
Abstract

Complexity has been argued to limit operational efficiency, hinder decision-making and induce disruption in supply chain networks. The main aim of this paper is to investigate the architectural trade-off between complexity and modularity in modular assembly supply chain networks. Towards this, an information-entropic complexity model is developed and applied to the domain of assembly supply chains and logistics. This approach characterises complexity as a combination of the intrinsic complexity of the system modules/interfaces and the influence of the topological composition of the network. The model is then used within an optimisation framework, where the optimal granularity level for assembly supply chain design solutions for a given assembly product can be automatically verified by considering the trade-off between complexity and network modularity. It is concluded that the proposed methodology could help to minimise the complexity of supply chain assembly configurations while maximising their modularity and thereby help to increase both the reliability and performance of supply chain networks.

KeywordsComplexity theory , Supply chains , Optimization , Uncertainty , Decision making , Entropy , Assembly systems
Year2021
JournalIEEE Access
Journal citation9, pp. 57907 - 57921
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Digital Object Identifier (DOI)https://doi.org/10.1109/ACCESS.2021.3072955
Publication dates
Online13 Apr 2021
Publication process dates
Accepted28 Mar 2021
Deposited21 Sep 2021
Publisher's version
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/8w9x0

  • 124
    total views
  • 95
    total downloads
  • 2
    views this month
  • 1
    downloads this month

Export as

Related outputs

A digital life-cycle management framework for sustainable smart manufacturing in energy intensive industries
Chinnathai, M. and Alkan, B. (2023). A digital life-cycle management framework for sustainable smart manufacturing in energy intensive industries. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2023.138259
A Solution Architecture for Energy Monitoring and Visualisation in Smart Factories with Robotic Automation
Webb, L., Tokhi, M. and Alkan, B. (2023). A Solution Architecture for Energy Monitoring and Visualisation in Smart Factories with Robotic Automation. 26th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines CLAWAR 2023. Florianópolis, Brazil 02 - 04 Oct 2023 CLAWAR Association.
Positional Health Assessment of Collaborative Robots based on Long Short-Term Memory Auto-Encoder (LSTMAE) Network
Hasan, M., Webb, L., Hossain, M., Tokhi, M. and Alkan, B. (2023). Positional Health Assessment of Collaborative Robots based on Long Short-Term Memory Auto-Encoder (LSTMAE) Network. 26th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines CLAWAR 2023. Florianópolis, Brazil 02 - 04 Oct 2023 CLAWAR Association.
Data Driven Machine Learning Model for Condition Monitoring and Anomaly Detection in Power Grids
Saleem, K., Alkan, B. and Dudley-Mcevoy, S. (2023). Data Driven Machine Learning Model for Condition Monitoring and Anomaly Detection in Power Grids. 2023 IEEE Power & Energy Society General Meeting. Orlando, Florida, US 10 - 16 Jul 2023 Institute of Electrical and Electronics Engineers (IEEE).
An End-to-End Big Data Analytics Platform for IoT-enabled Smart Factories: A Case Study of Battery Module Assembly System for Electric Vehicles
Kahveci, S., Alkan, B., Ahmad, M. and Harrison, R. (2022). An End-to-End Big Data Analytics Platform for IoT-enabled Smart Factories: A Case Study of Battery Module Assembly System for Electric Vehicles. Journal of Manufacturing Systems. 63, pp. 214-223. https://doi.org/10.1016/j.jmsy.2022.03.010
A Hybrid Extreme Learning Machine Model with Harris Hawks Optimisation Algorithm: An Optimised Model for Product Demand Forecasting Applications
Chaudhuri, K. D. and Alkan, B. (2022). A Hybrid Extreme Learning Machine Model with Harris Hawks Optimisation Algorithm: An Optimised Model for Product Demand Forecasting Applications. Applied Intelligence. https://doi.org/10.1007/s10489-022-03251-7
Performance Comparison of Recent Population-based Metaheuristic Optimisation Algorithms in Mechanical Design Problems of Machinery Components
Alkan, B. and Chinnathai, M.K. (2021). Performance Comparison of Recent Population-based Metaheuristic Optimisation Algorithms in Mechanical Design Problems of Machinery Components. MDPI Machines. 9 (12), p. 341.
A novel data-driven approach to support decision-making during production scale-up of assembly systems
Alkan, B. (2021). A novel data-driven approach to support decision-making during production scale-up of assembly systems. Journal of Manufacturing Systems. 59, pp. 577-595. https://doi.org/10.1016/j.jmsy.2021.03.018
Assessing operational complexity of manufacturing systems based on algorithmic complexity of key performance indicator time-series
Alkan, B. and Bullock, S. (2020). Assessing operational complexity of manufacturing systems based on algorithmic complexity of key performance indicator time-series. Journal of the Operational Research Society. https://doi.org/10.1080/01605682.2020.1779622
A Design Process Framework to Deal with Non-functional Requirements in Conceptual System Designs
Alkan, B., Seth, B., Galvin, K. and Johnson, A. (2020). A Design Process Framework to Deal with Non-functional Requirements in Conceptual System Designs. Complex Systems Design & Management. Paris 15 - 17 Dec 2020
Improving just-in-time delivery performance of IoT-enabled flexible manufacturing systems with AGV based material transportation
Yao, F, Alkan, B, Ahmad, B and Harrison, R (2020). Improving just-in-time delivery performance of IoT-enabled flexible manufacturing systems with AGV based material transportation. Sensors (Switzerland). 20 (21), pp. 1-25. https://doi.org/10.3390/s20216333
A framework to predict energy related key performance indicators of manufacturing systems at early design phase
Assad, F, Alkan, B, Chinnathai, MK, Ahmad, MH, Rushforth, EJ and Harrison, R (2019). A framework to predict energy related key performance indicators of manufacturing systems at early design phase. Procedia CIRP. 81, pp. 145-150. https://doi.org/10.1016/j.procir.2019.03.026
A Framework for Pilot Line Scale-up using Digital Manufacturing
Chinnathai, M. K., Al-Mowafy, Z., Alkan, B., Vera, D. and Harrison, R. (2019). A Framework for Pilot Line Scale-up using Digital Manufacturing. Procedia CIRP. 81, pp. 962-967. https://doi.org/10.1016/j.procir.2019.03.235
An experimental investigation on the relationship between perceived assembly complexity and product design complexity
Alkan, B. (2019). An experimental investigation on the relationship between perceived assembly complexity and product design complexity. International Journal on Interactive Design and Manufacturing (IJIDeM). 13 (3), pp. 1145-1157. https://doi.org/10.1007/s12008-019-00556-9
A virtual engineering based approach to verify structural complexity of component-based automation systems in early design phase
Alkan, B. and Harrison, R. (2019). A virtual engineering based approach to verify structural complexity of component-based automation systems in early design phase. Journal of Manufacturing Systems. 53, pp. 18-31. https://doi.org/10.1016/j.jmsy.2019.09.001
Pilot To Full-Scale Production: A Battery Module Assembly Case Study
Chinnathai, M.K., Alkan, B., Vera, D. and Harrison, R. (2018). Pilot To Full-Scale Production: A Battery Module Assembly Case Study. Procedia CIRP. 72, pp. 796-801. https://doi.org/10.1016/j.procir.2018.03.194
Proposing a Holistic Framework for the Assessment and Management of Manufacturing Complexity through Data-centric and Human-centric Approaches
Alkan, B. (2018). Proposing a Holistic Framework for the Assessment and Management of Manufacturing Complexity through Data-centric and Human-centric Approaches. Proceedings of the 3rd International Conference on Complexity, Future Information Systems and Risk (COMPLEXIS 2018).
Complexity in manufacturing systems and its measures: a literature review
Alkan, B., Vera, D., Ahmad, M., Ahmad, B. and Harrison, R. (2018). Complexity in manufacturing systems and its measures: a literature review. European Journal of Industrial Engineering . 12 (1). https://doi.org/10.1504/EJIE.2018.089883
Convertibility Evaluation of Automated Assembly System Designs for High Variety Production
Chinnathai, M.K., Alkan, B. and Harrison, R. (2017). Convertibility Evaluation of Automated Assembly System Designs for High Variety Production. Elsevier BV. https://doi.org/10.1016/j.procir.2017.01.005
Assessing Complexity of Component-Based Control Architectures Used in Modular Automation Systems
Alkan, B., Vera, D., Chinnathai, M. K. and Harrison, R. (2017). Assessing Complexity of Component-Based Control Architectures Used in Modular Automation Systems . International Journal of Computer and Electrical Engineering . 9 (1). https://doi.org/10.17706/ijcee.2017.9.1.393-402
A method to assess assembly complexity of industrial products in early design phase
Alkan, B., Vera, D., Ahmad, B. and Harrison, R. (2017). A method to assess assembly complexity of industrial products in early design phase. IEEE Access. 6, pp. 989-999. https://doi.org/10.1109/ACCESS.2017.2777406
A Framework for Automatically Realizing Assembly Sequence Changes in a Virtual Manufacturing Environment
Ahmad, M, Ahmad, B, Harrison, R, Alkan, B, Vera, D, Meredith, J and Bindel, A (2016). A Framework for Automatically Realizing Assembly Sequence Changes in a Virtual Manufacturing Environment. Elsevier BV. https://doi.org/10.1016/j.procir.2016.04.178
A Lightweight Approach for Human Factor Assessment in Virtual Assembly Designs: An Evaluation Model for Postural Risk and Metabolic Workload
Alkan, B, Vera, D, Ahmad, M, Ahmad, B and Harrison, R (2016). A Lightweight Approach for Human Factor Assessment in Virtual Assembly Designs: An Evaluation Model for Postural Risk and Metabolic Workload. Elsevier BV. https://doi.org/10.1016/j.procir.2016.02.115
A Model for Complexity Assessment in Manual Assembly Operations Through Predetermined Motion Time Systems
Alkan, B, Vera, D, Ahmad, M, Ahmad, B and Harrison, R (2016). A Model for Complexity Assessment in Manual Assembly Operations Through Predetermined Motion Time Systems. Procedia CIRP. 44, pp. 429-434. https://doi.org/10.1016/j.procir.2016.02.111
Hydrogen Fuel Cell Pick and Place Assembly Systems: Heuristic Evaluation of Reconfigurability and Suitability
Ahmad, M., Ahmad, B., Alkan, B., Vera, D., Harrison, R., Meredith, J. and Bindel, A. (2016). Hydrogen Fuel Cell Pick and Place Assembly Systems: Heuristic Evaluation of Reconfigurability and Suitability. Procedia CIRP. 57, pp. 428-433. https://doi.org/10.1016/j.procir.2016.11.074
The Use of a Complexity Model to Facilitate in the Selection of a Fuel Cell Assembly Sequence
Ahmad, M., Alkan, B., Ahman, B., Vera, D., Harrison, R., Meredith, J. and Bindel, A. (2016). The Use of a Complexity Model to Facilitate in the Selection of a Fuel Cell Assembly Sequence. Procedia CIRP. 44, pp. 169-174. https://doi.org/10.1016/j.procir.2016.02.054
Design Evaluation of Automated Manufacturing Processes Based on Complexity of Control Logic
Alkan, B., Vera, D., Ahmad, M., Ahmad, B. and Harrison, R. (2016). Design Evaluation of Automated Manufacturing Processes Based on Complexity of Control Logic. Procedia CIRP. 50, pp. 141-146. https://doi.org/10.1016/j.procir.2016.05.031