Assessing Complexity of Component-Based Control Architectures Used in Modular Automation Systems

Journal article


Alkan, B., Vera, D., Chinnathai, M. K. and Harrison, R. (2017). Assessing Complexity of Component-Based Control Architectures Used in Modular Automation Systems . International Journal of Computer and Electrical Engineering . 9 (1). https://doi.org/10.17706/ijcee.2017.9.1.393-402
AuthorsAlkan, B., Vera, D., Chinnathai, M. K. and Harrison, R.
Abstract

Component-based development (CBD) supports hierarchical decomposition of manufacturing control architectures through data and procedural abstraction, allowing designers to handle system development complexity better than function-oriented methods. Although the CBD approach helps managing complexity of the software design and development process, it does not reduce or eliminate complexity of control systems. In fact, large and highly coupled system architectures make entire software very difficult to understand and modify, especially during manufacturing system re-configuration and scale up/down processes. Therefore, it is essential to maintain simplicity in control system design, without disregarding the required modularity and functionality. This paper proposes an information-theoretic measure to quantify the complexity of component-based manufacturing control systems. The proposed measure is tested over the auto-generated control codes of Festo MPS system for its validity. The authors believe that the proposed approach can serve as a proactive design support, especially useful for early design stages as it allows designers to select the optimal control architectures with least complexity and provides a clear understanding of the potential stress points.

KeywordsComplexity, component-based development, distributed control, software metrics, information theory
Year2017
JournalInternational Journal of Computer and Electrical Engineering
Journal citation9 (1)
PublisherInternational Academy Publishing
Digital Object Identifier (DOI)https://doi.org/10.17706/ijcee.2017.9.1.393-402
Publication dates
PrintJun 2017
Publication process dates
AcceptedMar 2017
Deposited15 Oct 2021
Publisher's version
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/8v1v6

Download files


Publisher's version
946-T033.pdf
License: CC BY 4.0
File access level: Open

  • 94
    total views
  • 56
    total downloads
  • 1
    views this month
  • 2
    downloads this month

Export as

Related outputs

A digital life-cycle management framework for sustainable smart manufacturing in energy intensive industries
Chinnathai, M. and Alkan, B. (2023). A digital life-cycle management framework for sustainable smart manufacturing in energy intensive industries. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2023.138259
A Solution Architecture for Energy Monitoring and Visualisation in Smart Factories with Robotic Automation
Webb, L., Tokhi, M. and Alkan, B. (2023). A Solution Architecture for Energy Monitoring and Visualisation in Smart Factories with Robotic Automation. 26th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines CLAWAR 2023. Florianópolis, Brazil 02 - 04 Oct 2023 CLAWAR Association.
Positional Health Assessment of Collaborative Robots based on Long Short-Term Memory Auto-Encoder (LSTMAE) Network
Hasan, M., Webb, L., Hossain, M., Tokhi, M. and Alkan, B. (2023). Positional Health Assessment of Collaborative Robots based on Long Short-Term Memory Auto-Encoder (LSTMAE) Network. 26th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines CLAWAR 2023. Florianópolis, Brazil 02 - 04 Oct 2023 CLAWAR Association.
Data Driven Machine Learning Model for Condition Monitoring and Anomaly Detection in Power Grids
Saleem, K., Alkan, B. and Dudley-Mcevoy, S. (2023). Data Driven Machine Learning Model for Condition Monitoring and Anomaly Detection in Power Grids. 2023 IEEE Power & Energy Society General Meeting. Orlando, Florida, US 10 - 16 Jul 2023 Institute of Electrical and Electronics Engineers (IEEE).
An End-to-End Big Data Analytics Platform for IoT-enabled Smart Factories: A Case Study of Battery Module Assembly System for Electric Vehicles
Kahveci, S., Alkan, B., Ahmad, M. and Harrison, R. (2022). An End-to-End Big Data Analytics Platform for IoT-enabled Smart Factories: A Case Study of Battery Module Assembly System for Electric Vehicles. Journal of Manufacturing Systems. 63, pp. 214-223. https://doi.org/10.1016/j.jmsy.2022.03.010
A Hybrid Extreme Learning Machine Model with Harris Hawks Optimisation Algorithm: An Optimised Model for Product Demand Forecasting Applications
Chaudhuri, K. D. and Alkan, B. (2022). A Hybrid Extreme Learning Machine Model with Harris Hawks Optimisation Algorithm: An Optimised Model for Product Demand Forecasting Applications. Applied Intelligence. https://doi.org/10.1007/s10489-022-03251-7
Performance Comparison of Recent Population-based Metaheuristic Optimisation Algorithms in Mechanical Design Problems of Machinery Components
Alkan, B. and Chinnathai, M.K. (2021). Performance Comparison of Recent Population-based Metaheuristic Optimisation Algorithms in Mechanical Design Problems of Machinery Components. MDPI Machines. 9 (12), p. 341.
A novel data-driven approach to support decision-making during production scale-up of assembly systems
Alkan, B. (2021). A novel data-driven approach to support decision-making during production scale-up of assembly systems. Journal of Manufacturing Systems. 59, pp. 577-595. https://doi.org/10.1016/j.jmsy.2021.03.018
Identifying Optimal Granularity Level of Modular Assembly Supply Chains Based on Complexity-Modularity Trade-Off
Alkan, B., Bullock, S. and Galvin, K. (2021). Identifying Optimal Granularity Level of Modular Assembly Supply Chains Based on Complexity-Modularity Trade-Off. IEEE Access. 9, pp. 57907 - 57921. https://doi.org/10.1109/ACCESS.2021.3072955
Assessing operational complexity of manufacturing systems based on algorithmic complexity of key performance indicator time-series
Alkan, B. and Bullock, S. (2020). Assessing operational complexity of manufacturing systems based on algorithmic complexity of key performance indicator time-series. Journal of the Operational Research Society. https://doi.org/10.1080/01605682.2020.1779622
A Design Process Framework to Deal with Non-functional Requirements in Conceptual System Designs
Alkan, B., Seth, B., Galvin, K. and Johnson, A. (2020). A Design Process Framework to Deal with Non-functional Requirements in Conceptual System Designs. Complex Systems Design & Management. Paris 15 - 17 Dec 2020
Improving just-in-time delivery performance of IoT-enabled flexible manufacturing systems with AGV based material transportation
Yao, F, Alkan, B, Ahmad, B and Harrison, R (2020). Improving just-in-time delivery performance of IoT-enabled flexible manufacturing systems with AGV based material transportation. Sensors (Switzerland). 20 (21), pp. 1-25. https://doi.org/10.3390/s20216333
A framework to predict energy related key performance indicators of manufacturing systems at early design phase
Assad, F, Alkan, B, Chinnathai, MK, Ahmad, MH, Rushforth, EJ and Harrison, R (2019). A framework to predict energy related key performance indicators of manufacturing systems at early design phase. Procedia CIRP. 81, pp. 145-150. https://doi.org/10.1016/j.procir.2019.03.026
A Framework for Pilot Line Scale-up using Digital Manufacturing
Chinnathai, M. K., Al-Mowafy, Z., Alkan, B., Vera, D. and Harrison, R. (2019). A Framework for Pilot Line Scale-up using Digital Manufacturing. Procedia CIRP. 81, pp. 962-967. https://doi.org/10.1016/j.procir.2019.03.235
An experimental investigation on the relationship between perceived assembly complexity and product design complexity
Alkan, B. (2019). An experimental investigation on the relationship between perceived assembly complexity and product design complexity. International Journal on Interactive Design and Manufacturing (IJIDeM). 13 (3), pp. 1145-1157. https://doi.org/10.1007/s12008-019-00556-9
A virtual engineering based approach to verify structural complexity of component-based automation systems in early design phase
Alkan, B. and Harrison, R. (2019). A virtual engineering based approach to verify structural complexity of component-based automation systems in early design phase. Journal of Manufacturing Systems. 53, pp. 18-31. https://doi.org/10.1016/j.jmsy.2019.09.001
Pilot To Full-Scale Production: A Battery Module Assembly Case Study
Chinnathai, M.K., Alkan, B., Vera, D. and Harrison, R. (2018). Pilot To Full-Scale Production: A Battery Module Assembly Case Study. Procedia CIRP. 72, pp. 796-801. https://doi.org/10.1016/j.procir.2018.03.194
Proposing a Holistic Framework for the Assessment and Management of Manufacturing Complexity through Data-centric and Human-centric Approaches
Alkan, B. (2018). Proposing a Holistic Framework for the Assessment and Management of Manufacturing Complexity through Data-centric and Human-centric Approaches. Proceedings of the 3rd International Conference on Complexity, Future Information Systems and Risk (COMPLEXIS 2018).
Complexity in manufacturing systems and its measures: a literature review
Alkan, B., Vera, D., Ahmad, M., Ahmad, B. and Harrison, R. (2018). Complexity in manufacturing systems and its measures: a literature review. European Journal of Industrial Engineering . 12 (1). https://doi.org/10.1504/EJIE.2018.089883
Convertibility Evaluation of Automated Assembly System Designs for High Variety Production
Chinnathai, M.K., Alkan, B. and Harrison, R. (2017). Convertibility Evaluation of Automated Assembly System Designs for High Variety Production. Elsevier BV. https://doi.org/10.1016/j.procir.2017.01.005
A method to assess assembly complexity of industrial products in early design phase
Alkan, B., Vera, D., Ahmad, B. and Harrison, R. (2017). A method to assess assembly complexity of industrial products in early design phase. IEEE Access. 6, pp. 989-999. https://doi.org/10.1109/ACCESS.2017.2777406
A Framework for Automatically Realizing Assembly Sequence Changes in a Virtual Manufacturing Environment
Ahmad, M, Ahmad, B, Harrison, R, Alkan, B, Vera, D, Meredith, J and Bindel, A (2016). A Framework for Automatically Realizing Assembly Sequence Changes in a Virtual Manufacturing Environment. Elsevier BV. https://doi.org/10.1016/j.procir.2016.04.178
A Lightweight Approach for Human Factor Assessment in Virtual Assembly Designs: An Evaluation Model for Postural Risk and Metabolic Workload
Alkan, B, Vera, D, Ahmad, M, Ahmad, B and Harrison, R (2016). A Lightweight Approach for Human Factor Assessment in Virtual Assembly Designs: An Evaluation Model for Postural Risk and Metabolic Workload. Elsevier BV. https://doi.org/10.1016/j.procir.2016.02.115
A Model for Complexity Assessment in Manual Assembly Operations Through Predetermined Motion Time Systems
Alkan, B, Vera, D, Ahmad, M, Ahmad, B and Harrison, R (2016). A Model for Complexity Assessment in Manual Assembly Operations Through Predetermined Motion Time Systems. Procedia CIRP. 44, pp. 429-434. https://doi.org/10.1016/j.procir.2016.02.111
Hydrogen Fuel Cell Pick and Place Assembly Systems: Heuristic Evaluation of Reconfigurability and Suitability
Ahmad, M., Ahmad, B., Alkan, B., Vera, D., Harrison, R., Meredith, J. and Bindel, A. (2016). Hydrogen Fuel Cell Pick and Place Assembly Systems: Heuristic Evaluation of Reconfigurability and Suitability. Procedia CIRP. 57, pp. 428-433. https://doi.org/10.1016/j.procir.2016.11.074
The Use of a Complexity Model to Facilitate in the Selection of a Fuel Cell Assembly Sequence
Ahmad, M., Alkan, B., Ahman, B., Vera, D., Harrison, R., Meredith, J. and Bindel, A. (2016). The Use of a Complexity Model to Facilitate in the Selection of a Fuel Cell Assembly Sequence. Procedia CIRP. 44, pp. 169-174. https://doi.org/10.1016/j.procir.2016.02.054
Design Evaluation of Automated Manufacturing Processes Based on Complexity of Control Logic
Alkan, B., Vera, D., Ahmad, M., Ahmad, B. and Harrison, R. (2016). Design Evaluation of Automated Manufacturing Processes Based on Complexity of Control Logic. Procedia CIRP. 50, pp. 141-146. https://doi.org/10.1016/j.procir.2016.05.031