The Use of a Complexity Model to Facilitate in the Selection of a Fuel Cell Assembly Sequence

Journal article


Ahmad, M., Alkan, B., Ahman, B., Vera, D., Harrison, R., Meredith, J. and Bindel, A. (2016). The Use of a Complexity Model to Facilitate in the Selection of a Fuel Cell Assembly Sequence. Procedia CIRP. 44, pp. 169-174. https://doi.org/10.1016/j.procir.2016.02.054
AuthorsAhmad, M., Alkan, B., Ahman, B., Vera, D., Harrison, R., Meredith, J. and Bindel, A.
Abstract

Various tools and methods exists for arriving at an optimised assembly sequence with most using a soft computing approach. However, these methods have issues including susceptibly to early convergence and high computational time. The typical objectives for these methods are to minimise the number of assembly change directions, orientation changes or the number of tool changes. This research proposes an alternative approach whereby an assembly sequence is measured based on its complexity. The complexity value is generated using design for assembly metrics and coupled with considerations for product performance, component precedence and material handling challenges to arrive at a sequence solution which is likely to be closest to the optimum for cost and product quality. The case presented in this study is of the assembly of a single proton exchange membrane fuel cell. This research demonstrates a practical approach for determining assembly sequence using data and tools that are used and available in the wider industry. Further work includes automating the sequence generation process and extending the work by considering additional factors such as ergonomics.

Year2016
JournalProcedia CIRP
Journal citation44, pp. 169-174
PublisherElsevier
Digital Object Identifier (DOI)https://doi.org/10.1016/j.procir.2016.02.054
Publication dates
Print11 Jun 2016
Publication process dates
Accepted11 Feb 2016
Deposited06 Jan 2021
Publisher's version
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/8v1yv

Download files


Publisher's version
1-s2.0-S221282711600336X-main.pdf
License: CC BY-NC-ND 4.0
File access level: Open

  • 7
    total views
  • 3
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Assessing operational complexity of manufacturing systems based on algorithmic complexity of key performance indicator time-series
Alkan, B. and Bullock, S. (2020). Assessing operational complexity of manufacturing systems based on algorithmic complexity of key performance indicator time-series. Journal of the Operational Research Society. https://doi.org/10.1080/01605682.2020.1779622
A Design Process Framework to Deal with Non-functional Requirements in Conceptual System Designs
Alkan, B., Seth, B., Galvin, K. and Johnson, A. (2020). A Design Process Framework to Deal with Non-functional Requirements in Conceptual System Designs. Complex Systems Design & Management. Paris 15 - 17 Dec 2020
Improving just-in-time delivery performance of IoT-enabled flexible manufacturing systems with AGV based material transportation
Yao, F, Alkan, B, Ahmad, B and Harrison, R (2020). Improving just-in-time delivery performance of IoT-enabled flexible manufacturing systems with AGV based material transportation. Sensors (Switzerland). 20 (21), pp. 1-25. https://doi.org/10.3390/s20216333
A framework to predict energy related key performance indicators of manufacturing systems at early design phase
Assad, F, Alkan, B, Chinnathai, MK, Ahmad, MH, Rushforth, EJ and Harrison, R (2019). A framework to predict energy related key performance indicators of manufacturing systems at early design phase. Procedia CIRP. 81, pp. 145-150. https://doi.org/10.1016/j.procir.2019.03.026
A Framework for Pilot Line Scale-up using Digital Manufacturing
Chinnathai, M. K., Al-Mowafy, Z., Alkan, B., Vera, D. and Harrison, R. (2019). A Framework for Pilot Line Scale-up using Digital Manufacturing. Procedia CIRP. 81, pp. 962-967. https://doi.org/10.1016/j.procir.2019.03.235
An experimental investigation on the relationship between perceived assembly complexity and product design complexity
Alkan, B. (2019). An experimental investigation on the relationship between perceived assembly complexity and product design complexity. International Journal on Interactive Design and Manufacturing (IJIDeM). 13 (3), pp. 1145-1157. https://doi.org/10.1007/s12008-019-00556-9
A virtual engineering based approach to verify structural complexity of component-based automation systems in early design phase
Alkan, B. and Harrison, R. (2019). A virtual engineering based approach to verify structural complexity of component-based automation systems in early design phase. Journal of Manufacturing Systems. 53, pp. 18-31. https://doi.org/10.1016/j.jmsy.2019.09.001
Pilot To Full-Scale Production: A Battery Module Assembly Case Study
Chinnathai, M.K., Alkan, B., Vera, D. and Harrison, R. (2018). Pilot To Full-Scale Production: A Battery Module Assembly Case Study. Procedia CIRP. 72, pp. 796-801. https://doi.org/10.1016/j.procir.2018.03.194
Convertibility Evaluation of Automated Assembly System Designs for High Variety Production
Chinnathai, M.K., Alkan, B. and Harrison, R. (2017). Convertibility Evaluation of Automated Assembly System Designs for High Variety Production. Elsevier BV. https://doi.org/10.1016/j.procir.2017.01.005
A method to assess assembly complexity of industrial products in early design phase
Alkan, B., Vera, D., Ahmad, B. and Harrison, R. (2017). A method to assess assembly complexity of industrial products in early design phase. IEEE Access. 6, pp. 989-999. https://doi.org/10.1109/ACCESS.2017.2777406
A Framework for Automatically Realizing Assembly Sequence Changes in a Virtual Manufacturing Environment
Ahmad, M, Ahmad, B, Harrison, R, Alkan, B, Vera, D, Meredith, J and Bindel, A (2016). A Framework for Automatically Realizing Assembly Sequence Changes in a Virtual Manufacturing Environment. Elsevier BV. https://doi.org/10.1016/j.procir.2016.04.178
A Lightweight Approach for Human Factor Assessment in Virtual Assembly Designs: An Evaluation Model for Postural Risk and Metabolic Workload
Alkan, B, Vera, D, Ahmad, M, Ahmad, B and Harrison, R (2016). A Lightweight Approach for Human Factor Assessment in Virtual Assembly Designs: An Evaluation Model for Postural Risk and Metabolic Workload. Elsevier BV. https://doi.org/10.1016/j.procir.2016.02.115
A Model for Complexity Assessment in Manual Assembly Operations Through Predetermined Motion Time Systems
Alkan, B, Vera, D, Ahmad, M, Ahmad, B and Harrison, R (2016). A Model for Complexity Assessment in Manual Assembly Operations Through Predetermined Motion Time Systems. Procedia CIRP. 44, pp. 429-434. https://doi.org/10.1016/j.procir.2016.02.111
Hydrogen Fuel Cell Pick and Place Assembly Systems: Heuristic Evaluation of Reconfigurability and Suitability
Ahmad, M., Ahmad, B., Alkan, B., Vera, D., Harrison, R., Meredith, J. and Bindel, A. (2016). Hydrogen Fuel Cell Pick and Place Assembly Systems: Heuristic Evaluation of Reconfigurability and Suitability. Procedia CIRP. 57, pp. 428-433. https://doi.org/10.1016/j.procir.2016.11.074
Design Evaluation of Automated Manufacturing Processes Based on Complexity of Control Logic
Alkan, B., Vera, D., Ahmad, M., Ahmad, B. and Harrison, R. (2016). Design Evaluation of Automated Manufacturing Processes Based on Complexity of Control Logic. Procedia CIRP. 50, pp. 141-146. https://doi.org/10.1016/j.procir.2016.05.031