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Abstract: The optimisation of complex engineering design problems is highly challenging due to
the consideration of various design variables. To obtain acceptable near-optimal solutions within
reasonable computation time, metaheuristics can be employed for such problems. However, a
plethora of novel metaheuristic algorithms are developed and constantly improved and hence it
is important to evaluate the applicability of the novel optimisation strategies and compare their
performance using real-world engineering design problems. Therefore, in this paper, eight recent
population-based metaheuristic optimisation algorithms—African Vultures Optimisation Algorithm
(AVOA), Crystal Structure Algorithm (CryStAl), Human-Behaviour Based Optimisation (HBBO),
Gradient-Based Optimiser (GBO), Gorilla Troops Optimiser (GTO), Runge–Kutta optimiser (RUN),
Social Network Search (SNS) and Sparrow Search Algorithm (SSA)—are applied to five different
mechanical component design problems and their performance on such problems are compared. The
results show that the SNS algorithm is consistent, robust and provides better quality solutions at
a relatively fast computation time for the considered design problems. GTO and GBO also show
comparable performance across the considered problems and AVOA is the most efficient in terms of
computation time.

Keywords: mechanical design; component design; product design; metaheuristics; artificial intelli-
gence; benchmark; soft computing; evolutionary intelligence; swarm intelligence

1. Introduction

An engineering design problem comprises of designing products that meet the func-
tional requirements by considering a multitude of values for decision variables [1]. With
the increase in the complexity of the design and its application, the number of decision
variables increases along with the candidate solutions [2]. Therefore, it is highly challenging
to use exhaustive search methods to solve the optimisation problems [3]. To overcome this
issue, it is possible to use the class of optimisation algorithms that fall under the category of
metaheuristics such that the design space is explored with a guiding heuristic technique [4].

Metaheuristic algorithms can be classified into the following branches: evolution-
ary, physics-based, plant-based, swarm intelligence, and human-based algorithms [5].
The evolutionary algorithms mimic the principle of evolution and include genetic al-
gorithm [6], differential evolution [7,8], genetic programming [9], biogeography-based
optimisation [10], evolution strategies [11], etc. The physics-based algorithms are derived
from real-world physical processes and comprise of simulated annealing [12], Henry’s
gas solubility optimisation [13], atom search optimisation [14], black hole algorithm [15],
colliding bodies optimisation [16] and many others. The plant-based metaheuristics mimic
the behaviour of the plants and include flower pollination algorithm [17], and invasive
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weed optimisation [18]. The swarm optimisation algorithms are inspired from collective
bodies or entities in nature and include particle swarm optimisation [19], ant colony optimi-
sation [20], tunicate swarm algorithm [21], manta ray foraging optimization algorithm [22],
sailfish optimizer [23], barnacles mating optimizer algorithm [24], firefly algorithm [25],
artificial bee colony algorithm [26], dolphin echolocation [27], salp swarm optimisation
algorithm [28] and cuckoo search [29]. The human-based algorithms include but are not
limited to queuing search algorithm [30] and kidney-inspired algorithm [31].

Population-based metaheuristics start with a population of candidate solutions that
are either selected at random or introduced using a custom script. The algorithms then
perform global exploration and local exploitation and are able to provide acceptable good
solutions for complex problems within reasonable computation time. They are easy to
implement and have the capability to bypass the local optima [32]. In recent years, a
number of novel algorithms have been proposed in the literature, such as African Vultures
Optimisation Algorithm (AVOA) [33], Crystal Structure Algorithm (CryStAl) [34], Human-
Behaviour Based Optimisation (HBBO) [35], Gradient-Based Optimiser (GBO) [36], Gorilla
Troops Optimiser (GTO) [37], Runge–Kutta optimiser (RUN) [38], Social Network Search
(SNS) [39], and Sparrow Search Algorithm (SSA) [40]. However, a comparison of these new-
generation metaheuristic optimisation algorithms on their applicability and performance
on various engineering design problems has not been evaluated. Therefore, in this paper,
the above-mentioned eight new-generation population-based metaheuristic optimisation
algorithms are compared and evaluated on five different classical mechanical machinery
component design problems such as the tension/compression spring design, crane hook
design, reduction gear design, pressure vessel design and hydrostatic thrust bearing design.
To the best of the authors’ knowledge, this is the first benchmark research study that
quantitatively and qualitatively evaluates the selected eight new-generation metaheuristic
optimisation algorithms by applying them in various mechanical machinery component
design problems. This article contributes to knowledge by providing a comprehensive
comparison and discussion of the applicability of the selected algorithms.

The rest of the paper is organised as follows. Section 2 briefly explains the meta-
heuristics optimisation algorithms used in this study. Section 3 describes the selected
mechanical component design problems, and the results of the computer experiments.
Section 4 discusses the findings of the paper, and provides an outlook for the future work.
Finally, Section 5 concludes the paper.

2. Optimisation Algorithms

In this section, the selected optimisation algorithms are briefly explained. All technical
details associated with these algorithms can be found in the foundation references.

2.1. African Vultures Optimisation Algorithm (AVOA)

The AVOA, proposed by [33], simulates the foraging and navigation behaviours of
the African vultures. The algorithm comprises of an initial population of vultures and the
first and second best solutions are considered. The algorithm comprises of four phases:
(i) determining the best vulture in a group, (ii) rate of starvation of vultures, (iii) exploration
and (iv) exploitation. The rate of starvation of vultures helps determine whether they are
in exploration phase or exploitation phase. Two different strategies for exploration are
used and the strategy is chosen with a parameter ‘P1’. For the exploitation phase, two
different strategies of rotating flight and siege-fight strategies are employed depending
on the parameter ‘P2’. The AVOA is found to perform faster than other algorithms due to
lower computational complexity. From our understanding, we believe that this algorithm
has not been applied elsewhere with the exception of the foundation paper.

2.2. Crystal Structure Algorithm (CryStAl)

The CryStAl proposed by [34] was inspired by the principles of the formation of
crystals in nature. It is a parameter-free novel metaheuristic algorithm in which the
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balance between the exploration and exploitation phases is not controlled by parameters.
During initialisation of the algorithm, the solution candidates are considered to be crystals
and those which occupy the corners are called the main crystals. The new positions
are determined by four kinds of position updates: (i) simple cubicle, (ii) cubicle with
mean crystals, (iii) cubical with best crystals, and (iv) cubicle with best and mean crystals.
The exclusion of the parameter to tune the exploration and exploitation phases can help
overcome the problems associated with local optima entrapment and convergence. The
authors believe that this algorithm has not been applied in any research problem apart
from the foundation paper.

2.3. Human Behavior-Based Optimisation Algorithm (HBBO)

The HBBO algorithm was developed based on the behaviour of human beings and
has five main steps: (i) initialisation, (ii) education, (iii) consultation, (iv) field changing
probability, and (v) finalisation [35]. In the initialisation step, the individual human beings
who form the population are spread across different fields. Each field has an expert
individual who has the best function value and the members of the field educate and
improve themselves to move around the best individual. The individuals of the various
fields who are not the expert individuals meet with a random advisor from the society
to change the solution variables. On finding a better solution, the existing solution is
replaced with the better one. The individuals are capable of changing the field based on
a probability value. The finalisation step involves calculating the fitness function and
checking the stopping criteria. The algorithm is tested against benchmark problems to
understand its reliability, result accuracy and convergence speed. The HBBO has recently
been used in variety of research domain including manufacturing cell design [41] and
cryptography [42], etc.

2.4. Gradient-Based Optimiser (GBO)

The GBO, initially developed by [36], is a population-based meta-heuristic algorithm.
It uses two operators, the Gradient Search Rule (GSR) and Local Escaping Operator (LEO)
to explore the search space. The gradient search rule, which is based on Newton’s method,
promotes the exploration capability of the GBO. It comprises of a direction of movement
term to enable movement towards promising solutions. The gradient-based optimisation
benefits from two search methods that enable the exploration and exploitation, respectively.
The local escaping operator allows the algorithm to escape from local optimum using six
different values of the solution candidates. It comprises of adaptive parameters that allows
the smooth transition from exploration to exploitation. The GBO has been used in a variety
of applications, such as economic load dispatch problem [43], parameter extraction in
photovoltaic models [44] and feature selection [45], etc.

2.5. Gorilla Troops Optimiser (GTO)

The gorilla troops optimiser is a novel meta-heuristic that was inspired by the social
behaviour of gorillas and was proposed by [37]. The exploration phase of the algorithm
comprises of three different mechanisms: (i) migration to unknown place, (ii) movement
to other gorillas which balances the exploration and exploitation, and (iii) migration to
a known location. The silverback gorilla represents the best solution and the candidate
solutions move towards this best solution. Follow the silverback gorilla and competition
for female gorillas are two mechanisms employed for the exploitation phase. The search
history, convergence behavior, the average fitness of the population, and the trajectory of
the first gorilla are considered for evaluation of the algorithm. From our understanding,
we believe that this algorithm has not been applied elsewhere with the exception of the
foundation paper.
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2.6. Runge–Kutta Optimisation (RUN)

The Runge–Kutta optimizer, proposed by [38], was derived from the ideas of the
Runge–Kutta method which is used in the field of mathematics to solve ordinary differential
equations. It is a population-based optimisation algorithm which employs the Enhanced
Solution Quality (ESQ) to avoid getting trapped in local optima and improve the solution
quality. The exploration and exploitation phases are improved with the help of the scale
factor. The convergence rate of the algorithm is improved by providing the choice of
choosing the new solution based on its quality and thereby increasing the efficiency of
global search while ensuring good quality local search. The balance between the exploration
and the exploitation phases is provided with the help of two random variables. The
performance of the RUN algorithm was qualitatively assessed by three metrics: (i) search
history, (ii) trajectory graph, and (iii) convergence curve and the algorithm was compared
with benchmark problems to assess its ability to explore and exploit the design space
efficiently. From a review of literature, it is understood that this algorithm is yet to be
applied on other design problems apart from those mentioned in the original work.

2.7. Social Network Search (SNS)

The SNS is a novel meta-heuristic algorithm that was inspired by the behaviour of
users across the social network platforms [39]. Four different moods are considered in the
algorithm: (i) imitation, (ii) conversation, (iii) disputation, and (v) innovation. The search
agents are the social media users and one of the four moods will be chosen randomly for
each user. Depending on the considered mood, the opinions of the user will change. The
decision to share a view will depend on whether it is better than the current one. The
algorithm comprises of three levels: initialisation, increasing popularity and termination.
It is also important to note that the SNS algorithm uses non-parametric statistical methods.
The algorithm is novel and it is believed that it has not been applied to any problems apart
from the work done in the foundation paper.

2.8. Sparrow Search Algorithm (SSA)

The group wisdom, foraging and anti-predation behaviour of sparrows are considered
for the novel swarm intelligence algorithm known as sparrow search algorithm [40]. The
population is divided into producers and scroungers. The producers have two modes
of search depending on whether a predator is nearby or not. The scroungers monitor
the producers and compete with them for food. If a sparrow is at the edge of the group,
it constantly tries to get a better position to avoid the predators. On the other hand, if
a sparrow is at the centre of the group, it moves closer towards its neighbours. SSA
is seen to have good performance in diverse search spaces. The SSA has been recently
employed in various applications, including but not limited to: optimal model parameters
identification of the Proton Exchange Membrane Fuel Cell (PEMFC) [46], optimal brain
tumor diagnosis [47], pulmonary nodule detection [48], carbon price forecasting [49] and
3D route planning for UAVs [50].

3. Computer Experiments

In this section, the performance of the above-mentioned metaheuristic optimisation al-
gorithms is analysed by performing the five design problems, namely: tension/compression
spring design, crane hook design, reduction gear design, pressure vessel design and hydro-
static thrust bearing design. The mathematical formulation of each design study can be
found in the Appendix A. All computer operations were performed in MATLAB environ-
ment, where the computer was configured with Intel(R) Core (TM) i7-11850H CPU @2.60
GHz and 32 GB RAM.

3.1. Parameter Settings

In the computer experiments, an exterior penalty function is deployed to deal with
design constraints. The parameter settings of each optimisation algorithms were selected
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based on the values provided by the foundation papers that were referenced in the Section 2;
they are provided in Table 1. The maximum iteration number and the population size
for each case study are selected based on the complexity of the problem and are given
in Table 2 along with the number of function evaluations (FEs). In order to analyse the
robustness of the selected optimisation algorithms, each case is repeated 100 times and
the best, mean, worst, standard deviation, convergence history, and the mean computa-
tion times are recorded. The best results obtained in each case are presented in bold in
Tables 4, 6, 8, 10 and 12.

Table 1. Specific parameter settings of used algorithms.

Algorithm Parameter Settings

AVOA P1 = 0.6, P2 = 0.4, P3 = 0.6, L1 = 0.8, L2 = 0.2,
w = 2.5,

CryStAl Global parameters (FEs and NP)
HBBO N f ield = 30, k1 = 0, k2 = 2.5, σ = 0.2
GBO βmin = 0.2, βmax = 1.2, pr = 0.5
GTO p = 0.03, β = 3, w = 0.8
RUN Global parameters (FEs and NP)
SNS Global parameters (FEs and NP)
SSA PD = 20%, SD = 10%, ST = 0.8

Notation: AVOA: P1, P2 and P3 are control parameters determining the probability of selecting mechanism in the
exploration phase, exploitation phase of the first part and the exploitation phase of the second phase, respectively.
L1 and L2 are probability parameters for selecting the first and second-best vultures, and w is a parameter
determining the disruption of the exploration and exploitation phases. HBBO: k1 and k1 are weight factors, σ
is the consultation factor, and N f ield is the number of initial fields GBO: pr is the probability ratio and βmin and
βmin are the GBO’s control parameters to balance algorithm’s exploration and exploitation processes. GTO: p is a
parameter to select the mechanism of migration to an unknown location, β and w are input parameters. SSA: PD
is the number of the producers, SD is the number of sparrows who perceive the danger, and ST represents the
safety threshold.

Table 2. The number of function evaluations FEs, maximum iteration number tmax and the population
size (NP) for each design optimisation problem.

Problem NP tmax FEs

Tension/compression spring design 35 500 17,500
Crane hook design 35 850 29,750
Reduction gear design 50 1250 62,500
Pressure vessel design 50 1000 50,000
Hydrostatic thrust bearing design 100 2000 200,000

3.2. Tension/Compression Spring Design

The tension/compression spring design problem depicted in Figure 1 is a continuous
constrained problem. The objective of this design problem is to minimise the weight of
the coil spring subjected to the constraints of shear stress, surge frequency, and minimum
deflection. The problem contains three design variables namely: the number of active coils
(x1), the diameter of the winding (x2), and diameter of the wire (x3).

The best solutions for each algorithm are presented in Table 3 and the results of the
simulation are provided in Table 4 for the tension/compression spring design problem.
From Figure 2, it can be seen that for the best replication run, all the algorithms are able to
converge to the global optimum approximately around 70 iterations. From Table 4, SNS
performs well for across all the criteria, however, AVOA performs better in terms of the
computation time. SNS is the most robust with a value of 5.3324×10−5, followed by GBO,
CryStAl, GTO, HBBO, AVOA, RUN and SSA. The performance of the GBO is similar to
that of the SNS; this could be due to the use of a Local Escaping Operator (LEO) which
significantly changes the position of a solution. Although the HBBO has the best result
across the replication runs, the standard deviation indicates that it is not able to consistently
arrive at the global optimum for this particular design problem.
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Figure 1. Schematic view of the tension/compression spring problem.

Figure 2. Best run convergence curves of each meta-heuristic algorithms (out of 100 repetitions) in
the tension/compression spring design optimisation problem.

Table 3. Best optimum solution of each algorithm for the tension/compression spring design optimisation problem.

Var. Algorithm

AVOA CryStAl HBBO GBO GTO RUN SNS SSA

fmin 0.012669 0.012718 0.012665 0.012665 0.012665 0.012665 0.012665 0.012666
x1 0.052157 0.050431 0.051688 0.051617 0.051673 0.051789 0.051699 0.051454
x2 0.368082 0.327152 0.356695 0.354992 0.356338 0.359122 0.356956 0.351091
x3 10.652547 13.285471 11.290315 11.390874 11.311287 11.149446 11.275058 11.626627
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Table 4. Statistical findings of the bench-marked algorithms for the tension/compression spring design problem.

Algorithm Best Mean Worst Std CPU Time (s)

AVOA 0.012669196719 0.013560633588 0.015508926159 0.000828257932 0.00298611
CryStAl 0.012718059192 0.012857705948 0.013166450230 0.000099876120 0.0427
HBBO 0.012665232805 0.012983204879 0.015342442232 0.000546532591 0.03068571
GBO 0.012665327053 0.012725601218 0.013046308894 0.000082488889 0.00758664
GTO 0.012665237347 0.012736771587 0.013274672049 0.000114193785 0.00583106
RUN 0.012665468642 0.013161559938 0.017773399457 0.001091488094 0.01252020
SNS 0.012665308324 0.012700310221 0.012908393770 0.000053324273 0.00449754
SSA 0.01266624413 0.013359346602 0.017773159421 0.001336305394 0.00506082

3.3. Crane Hook Design

The crane hook is a rectangular wire ring that is clipped and bent to give the final
hook shape. The aim of the crane hook design optimisation is to minimise the volume of
the hook subjected to the constraints of yield stress and geometric feasibility. There are
three design parameters, namely: the outer radius of the hook (x1), the inner radius of
the hook (x2), and width of the hook (x3). Schematic view of the crane hook is given in
Figure 3.

Figure 3. Schematic view of the crane hook design problem.

Tables 5 and 6 present the best solution and the statistical simulation results obtained
by the algorithms for the crane hook design problem. Figure 4 indicates that for the best
replication run, all the algorithms are able to converge to the global optimum approximately
around 500 iterations. From Table 6, the SNS is the most robust and is followed by
GBO, SSA, GTO, RUN, AVOA, CryStAl and HBBO. GBO has the best mean across the
100 replication runs. The mean value for the SNS algorithm is very close to the GBO with
only a difference of 2.9792×10−4. It can also be seen that AVOA has the best performance
in terms of the computation time followed by SNS and SSA.
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Figure 4. Best run convergence curves of each meta-heuristic algorithms (out of 100 repetitions) in
the crane hook design optimisation problem.

Table 5. Best optimum solution of each algorithm for the crane hook design optimisation problem.

Var. Algorithm

AVOA CryStAl HBBO GBO GTO RUN SNS SSA

fmin 37.501763 37.505239 37.502003 37.501763 37.501764 37.501770 37.501765 37.501763
x1 3.389569 3.393468 3.380692 3.389197 3.389747 3.390378 3.389217 3.389350
x2 1.500000 1.500000 1.500000 1.500000 1.500000 1.500000 1.500000 1.500000
x3 1.292017 1.288449 1.300485 1.292370 1.291849 1.291252 1.292352 1.292226

Table 6. Statistical findings of the bench-marked algorithms for the crane hook design problem.

Algorithm Best Mean Worst Std CPU Time (s)

AVOA 37.501768304530 37.509521006356 37.567143974448 0.012437419152 0.00475095
CryStAl 37.502652718785 37.528776144364 37.614401549196 0.021833637274 0.02640220
HBBO 37.501773097093 37.573060310021 37.976041870924 0.122369512361 0.03530030
GBO 37.501763283040 37.501857914596 37.504126932995 0.000349234645 0.01275198
GTO 37.501763262652 37.503112132524 37.509524542183 0.001892413110 0.00894737
RUN 37.501775668620 37.508273179197 37.546955429412 0.010504431267 0.02143182
SNS 37.501763577814 37.501955818081 37.502840983287 0.000297921175 0.00738974
SSA 37.501763937287 37.502795252003 37.509275937416 0.001709946677 0.00797318

3.4. Reduction Gear Design

The reduction gear design problem is one of the widely used engineering design
optimisation benchmark problems and is initially conceptualised by [51]. Figure 5 depicts
the schematic view of the reduction gear problem. The objective of this design problem
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is to find an acceptable near-optimal set of variables, i.e., that can provide a minimum
total weight under eleven geometric constraints. The problem has seven design variables,
namely: (x1) the face width, (x2) the module of the teeth, (x3) the number of teeth on the
pinion, (x4) the length of the first shaft between bearings, (x5) the length of the second
shaft between bearings, (x6) the diameter of the first shaft and (x7) the diameter of the
second shaft. The constraints are (i) the limits of the bending stress on the gear teeth,
(ii) surface stress, (iii) transverse deflections of both shafts and (iv) stress in both shafts.
Please note that the third variable in this design problem is an integer while the remaining
are continuous variables.

Figure 5. Schematic view of the reduction gear design problem.

For the reduction gear design, the algorithms slightly different ‘best’ solutions and
they are presented in Table 7; Table 8 presents the best solution and simulation results
obtained by the eight algorithms. From Figure 6, for the best replication run, all algorithms
are capable of converging to the global optimum around 600 iterations. From Table 8,
GBO, GTO, SNS and SSA have good performance across all evaluation criteria. GBO is
the most robust with a value of 3.635×10−12 followed by SNS, SSA, RUN, AVOA, GTO,
HBBO and CryStAl. AVOA has the best performance in terms of the computation time and
it is closely followed by SSA and SNS. GTO does find the global optimum with a relatively
fast computation time, however, the standard deviation indicates that it is not as robust
as a few other algorithms with the considered parameter values for the reduction gear
design problem.

Table 7. Best optimum solution of each algorithm for the reduction gear design optimisation problem.

Var. Algorithm

AVOA CryStAl HBBO GBO GTO RUN SNS SSA

fmin 2994.355035 2999.199820 2994.355026 2994.355026 2994.355026 2994.360057 2994.355026 2994.355026
x1 3.500000 3.502645 3.500000 3.500000 3.500000 3.500004 3.500000 3.500000
x2 0.700000 0.700000 0.700000 0.700000 0.700000 0.700000 0.700000 0.700000
x3 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000 17.000000
x4 7.300000 7.300000 7.300000 7.300000 7.300000 7.300001 7.300000 7.300000
x5 7.715320 7.776127 7.715320 7.715320 7.715320 7.715415 7.715320 7.715320
x6 3.350215 3.355539 3.350215 3.350215 3.350215 3.350216 3.350215 3.350215
x7 5.286654 5.288404 5.286654 5.286654 5.286654 5.286656 5.286654 5.286654
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Table 8. Statistical findings of the bench-marked algorithms for the reduction gear design problem.

Algorithm Best Mean Worst Std CPU Time (s)

AVOA 2994.355035177460 2996.948906023790 3010.205238324880 3.050912549282 0.00199605
CryStAl 2999.199820220130 3025.816152450150 3167.006692311780 23.589811855532 0.00682740
HBBO 2994.355026112020 2995.873515410200 3033.632877394140 7.534482000137 0.00670371
GBO 2994.355026112020 2994.355026112010 2994.355026112020 0.000000000004 0.00293696
GTO 2994.355026112020 2996.909938595160 3016.654294988220 5.793856810156 0.00263637
RUN 2994.360057223500 2996.941885889620 3005.175063824030 2.571268627965 0.00529230
SNS 2994.355026112020 2994.355026112010 2994.355026112020 0.000000000004 0.00225359
SSA 2994.355026112020 2994.355026112010 2994.355026112020 0.000000000004 0.00206693

Figure 6. Best run convergence curves of each meta-heuristic algorithms (out of 100 repetitions) in
the reduction gear design optimisation problem.

3.5. Cylindrical Pressure Vessel Design

The pressure vessel design problem is initially conceptualised by [52] which is one of
the most used design optimisation benchmarks. The objective of this problem is to minimise
the total manufacturing cost of the cylindrical pressure vessel which is a combination of
material, forming and welding costs. The pressure vessel has covered at the split ends while
the head part has a hemispherical shape. Figure 7 shows the schematic representation of
the problem. This problem has four variables, namely: thickness of the shell (x1), thickness
of the head (x2), inner radius (x3) and the length of the vessel (x4). The problem has
four inequalities.

Tables 9 and 10 present the best solution for each algorithm and the statistical simula-
tion results obtained by the algorithms for the pressure vessel design problem, respectively.
From Figure 8, for the best replication run, it can be seen that all the algorithms are able to
converge to the global optimum approximately around 200 iterations. In particular, as seen
from Table 10, the GBO algorithm is the most robust with a standard deviation value of
68.523 for the pressure vessel design problem and has good scores across all the evaluation
criteria. It is followed by the SNS, CryStAl, HBBO, GTO, SSA, AVOA and RUN. The GBO
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algorithm has a local escaping operator that prevents entrapment at the local optima; this
could the reason for the robustness of the algorithm. In terms of the time to converge, SSA,
HBBO and AVOA converge earlier, approximately around 80 iterations. In terms of the
mean computation time across the replications, similar to the previous design problems
(see Tables 6 and 8), AVOA has the best performance. It can be seen that SNS also has a
similar performance in terms of the computation time in addition to having a low standard
deviation. In SNS, clear a distinction between the exploration and exploitation phases
is not provided; the balance between the two phases is not controlled using parameters.
Instead, the candidate solutions of the population are randomly subjected to one of the four
strategies. Therefore, the exploration and exploitation phases happen at random depending
on the chosen strategy which avoids the entrapment at local optima; this could be the
reason why the SNS has a slightly higher computation time despite its robust performance.

Figure 7. Schematic view of the cylindrical pressure vessel design problem.

Figure 8. Best run convergence curves of each meta-heuristic algorithms (out of 100 repetitions) in
the pressure vessel design optimisation problem.
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Table 9. Best optimum solution of each algorithm for the cylindrical pressure vessel design optimisation problem.

Var. Algorithm

AVOA CryStAl HBBO GBO GTO RUN SNS SSA

fmin 5885.373899 5974.379050 5885.331251 5885.331290 5885.331251 5885.358639 5885.331259 5885.334152
x1 0.778193 0.782667 0.778168 0.778168 0.778168 0.778170 0.778168 0.778170
x2 0.384661 0.393180 0.384649 0.384649 0.384649 0.384655 0.384649 0.384650
x3 40.320911 40.525039 40.319619 40.319619 40.319619 40.319678 40.319619 40.319705
x4 199.982005 199.890718 200.000000 199.999998 200.000000 199.999554 200.000000 199.998801

Table 10. Statistical findings of the bench-marked algorithms for the cylindrical pressure vessel design problem.

Algorithm Best Mean Worst Std CPU Time (s)

AVOA 5885.3738987482 6435.3490970377 7318.9955182938 495.3062860591 0.00205490
CryStAl 5974.3790500167 6470.6393698594 7102.3066251881 256.7609412380 0.01141518
HBBO 5885.3312508567 6184.9051478586 7318.9989210708 347.8356798794 0.01408385
GBO 5885.3312900824 5912.3347543230 6309.3266189585 68.5231352046 0.00535753
GTO 5885.3312508567 6209.8831784614 7318.9989210708 433.7313628757 0.00415526
RUN 5885.3586393254 6889.2020918829 7319.1357489398 628.5456318607 0.00902184
SNS 5885.3312588460 5967.6346717171 7318.2220337882 250.1319816538 0.00297717
SSA 5885.3341524728 6411.1266934476 7318.9989210708 479.2420166123 0.00303397

3.6. Hydrostatic Thrust Bearing Design

In this design optimisation problem defined by [53], four design variables are consid-
ered as follows: bearing step radius (x1), recess radius (x2), viscosity (x3) and flow rate (x4).
The objective of the optimisation is to minimise the power loss during the operation of the
hydrostatic plain bearing. Figure 9 shows the schematic representation of the problem. The
seven nonlinear constraints of weight capacity g1(~x), inlet oil pressure g2(~x), oil tempera-
ture rise g3(~x), oil film thickness g4(~x), step radius g5(~x), exit loss significance g6(~x) and
contact pressure g7(~x) are also considered (please see Appendix A).

Figure 9. Schematic view of the hydrostatic thrust bearing design problem.

Tables 11 and 12 present the best solution for each algorithm and the statistical simula-
tion results obtained by the algorithms for the hydrostatic thrust bearing design problem,
respectively. From Figure 10, for the best replication run, it can be seen that all the algo-
rithms are able to converge to the global optimum approximately around 600 iterations.
In particular, as seen from Table 12, the SNS algorithm is the most robust with a standard
deviation value of 16.597 for the hydrostatic thrust bearing design problem and has good
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scores across all the evaluation criteria. It is followed by the CryStAl, GBO, GTO, RUN,
AVOA, HBBO, and SSA. In terms of the time to converge, AVOA converges earlier, approx-
imately around 500 iterations. It can be seen that SNS also has a similar performance in
terms of the computation time in addition to having a low standard deviation. Although
SNS is the most robust, the best value of the objective function is relatively higher than the
values found by the GBO, GTO, and RUN algorithms.

Figure 10. Best run convergence curves of each meta-heuristic algorithms (out of 100 repetitions) in
the hydrostatic thrust bearing design optimisation problem.

Table 11. Best optimum solution of each algorithm for the Hydrostatic thrust bearing design optimisation problem.

Var. Algorithm

AVOA CryStAl HBBO GBO GTO RUN SNS SSA

fmin 19,544.66481 20,551.94918 23,183.54393 19,505.31331 19,505.76493 19,505.85672 19,515.50557 20,459.41775
x1 5.959052191 6.038211653 6.398078596 5.955780499 5.955888118 5.955827384 5.956719465 6.042305703
x2 5.3926286 5.452684743 5.874142492 5.38901305 5.389131987 5.38905445 5.389912069 5.4780081
x3 5.38×10−6 5.57×10−6 6.73×10−6 5.36×10−6 5.36×10−6 5.36×10−6 5.36×10−6 5.74×10−6

x4 2.286644923 2.539761897 4.066687785 2.269656072 2.269723697 2.269807988 2.272161645 2.647407856

Table 12. Statistical findings of the bench-marked algorithms for the Hydrostatic thrust bearing design problem.

Algorithm Best Mean Worst Std CPU Time (s)

AVOA 19,544.6648069058 23,956.5558577224 42,889.0448729199 3127.6848031821 0.021506546
CryStAl 20,551.9491788596 22,834.6295959337 24,761.4009721265 1016.4245763020 0.103373525
HBBO 23,183.5439311853 31,259.1001178412 48,556.9957076442 4573.4127562409 0.094215091
GBO 19,505.3133077224 20,886.4642416408 26,025.4186699601 1481.9044873111 0.044018051
GTO 19,505.7649269808 22,182.0691330824 28,734.8082159540 1890.1924714863 0.038249415
RUN 19,505.8567225382 20,680.5525292687 33,034.8218788356 3044.6733188831 0.085310708
SNS 19,515.5055737337 19,536.7881264808 19,600.1259774218 16.5978846836 0.027272087
SSA 20,459.4177472381 31,040.7176967004 78,295.6327390864 8912.0581928620 0.025494880
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4. Discussion
4.1. Observations from the Benchmark Study

This research study applies eight different metaheuristic algorithms on five mechanical
component design problems to provide an insight into the efficiency and robustness of
the algorithms for design optimisation. Following a detailed analysis of the various
algorithms, it was understood that the performance of the algorithms vary across the
different applications.

Across the selected mechanical design problems, it can be seen that SNS and GBO
have very good results across the evaluation criteria. SNS performs very well in the ten-
sion/compression spring design, crane hook design, reduction gear design and hydrostatic
thrust bearing design problems. For the pressure vessel design problem, however, GBO
performs better than SNS. In the SNS algorithm, the candidate solutions represent the users
and their moods are selected at random. The choice of mood greatly impacts the explo-
ration and exploitation behaviour of the algorithm. Although it means that the algorithm
might not have a strong sense of direction towards the global optimum, the computation
time is still fast. The prevention of local optima entrapment facilitated by the structure
of the algorithm might ensure that the algorithm is consistently able to find the global
optimum across the 100 replications.

The GBO algorithm includes an escaping mechanism that introduces randomness to
prevent entrapment in local optima. This suggests that the algorithm is able to provide a
reasonably good performance and is comparable to SNS across all the design problems.
SSA shows good performance overall and has good computation time and comparable
robustness; in particular, it performs very well for the reduction gear design problem.
However, in the hydrostatic thrust bearing design problem, SSA performed significantly
poorly. This might be owing to the incompatibility of the selected algorithm parameters
for this design case, which is the most complicated of the five case studies. It can also be
seen that the HBBO, GTO, RUN and SSA algorithms also perform well and are able to find
the near-optimal solutions in a majority of the problems. GTO also has good computation
time across the design problems and this can be attributed to the movement to a known
location and other gorillas during the exploration phase and the directional focus and best
position update provided by the following of the silverback gorilla and competition for
females, respectively, during the exploitation phase. The CryStal algorithm, on the other
hand, performed consistently across all specified mechanical component design problems.
However, it was observed that it performed badly in terms of convergence to the global
optimum when compared to other algorithms. Because it is intended to be a simple and
easy-to-use algorithm with no internal or external parameters to tune, a modified version
of CryStal with improved exploration/exploration balance could be a feasible optimisation
technique, particularly in mechanical component design optimisation problems.

The AVOA has consistently good performance across all five design optimisation
problems in terms of computation time. As explained previously, the reason behind the
fast computational speed of AVOA can be attributed to the two different exploration
strategies which are chosen based on the satiation of the vulture, the best vulture’s position
and the boundaries of the problem. Additionally, the exploitation phase employs four
different strategies for local searches. AVOA is able to reach the near-optimal solutions
fairly quickly; the performance across the replications, however, suggests that the AVOA is
less robust than SNS and GBO. Therefore, for design problems which are time-sensitive
and the variables need not be selected to a very high level degree of precision, AVOA is a
good choice due to its fast computation time.

4.2. A Comparison with Traditional Optimisation Techniques

A further benchmark of the algorithms with two widely used meta-heuristics, GA and
PSO was done and provided in Figure 11, such that the readers can appreciate and compare
the performance of the novel algorithms with the classical widely used optimisation
algorithms. The parameters of the GA are selected as follows: distribution index for
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crossover = 20, distribution index for mutation = 20, crossover probability = 0.5, mutation
probability = 0.2. On the other hand, PSO parameters are selected as follows: inertia
weight = 1, inertia weight damping ratio = 0.99, personal learning coefficient = 1.5 and
global learning coefficient = 2. The population size and maximum number of iterations
are same as highlighted in Table 2.

Figure 11. A spider plot comparison of eight recent and two widely used (i.e., GA and PSO)
population-based metaheuristic optimisation techniques was undertaken on the five component
design problems. Please remember that smaller values indicate better performance. The annotations
are as follows: T/CS, tension/compression spring; CH, crane hook; RG, reduction gear; CPV,
cylindrical pressure vessel; HTB, hydrostatic thrust bearing.

From Figure 11, there are four spider plots; the best scores for each algorithm acquired
over 100 replications show if the algorithm is capable of discovering solutions that are near
to the global optimum. A lower mean value of the observations across replications indicates
the consistency of the algorithms under consideration. The radar chart displaying standard
deviation can be used to evaluate the algorithm’s repeatability. The obtained results for
GA and PSO for each design problem are given in Table 13. Figure 11 shows that, with
the exception of the crane hook design problem, which is the simplest case, most recent
optimisation algorithms outperform GA. PSO, on the other hand, performs well across
all of the specified design optimisation problems. However, the majority of the selected
recent optimisation methods outperformed PSO in terms of both accuracy and repeatability.
Comparing with recent metaheuristics, as seen in Figure 11’s mean and standard deviation
plots, PSO produced slightly poor results, excluding the reduction gear design optimisation
problem. In terms of finding the global optimum, nearly all recent metaheuristic algorithms
outperformed PSO and GA in various design challenges, with the exceptions of HBBO and
CryStal. Nearly all of the selected recent metaheuristics outperform GA and PSO in terms
of overall performance over 100 repetitions. This explicitly showcases that the superiority
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of new-generation population-based meta-heuristics over the vanilla versions of traditional
GA and PSO optimisation algorithms.

Table 13. Statistical findings of the GA and PSO for the selected design problems.

GA

Problem Best Mean Worst Std

Tension/compression spring 0.0127 0.0147 0.0194 0.0018
Crane hook 37.5020 37.5097 37.5534 0.0092
Reduction gear 2997.7740 3006.4162 3017.4886 4.7139
Pressure vessel 6188.2862 8392.3701 12,661.0607 1003.2803
Hydrostatic thrust bearing 20,569.5064 26,767.7566 51,065.2918 5032.2942

PSO

Tension/compression spring 0.0127 0.0133 0.0164 0.0009
Crane hook 37.5018 37.5109 37.5918 0.0172
Reduction gear 2994.3550 2994.3550 2994.3550 0.0000
Pressure vessel 5909.6257 6277.7288 7182.9114 307.6918
Hydrostatic thrust bearing 19,819.4262 26,077.9339 36,586.4885 4305.7754

4.3. Limitations and Future Work

The presented work considers the eight recent population-based meta-heuristic algo-
rithms with the optimisation parameters selected from the foundation parameters. Perform-
ing a detailed sensitivity analysis to identify the best parameters for each algorithm was
not done. A more detailed analysis will be done as part of the future work. Additionally,
an extensive comparison of the performance of the algorithms on other design problems
and engineering applications will also be done. From the presented comparison, it can be
concluded that each algorithm has its strengths and weaknesses, and there is no distinct
meta-heuristic that outperforms all others. Therefore, there is the possibility of combining
the best of different algorithms to provide hybrid-approaches that will help overcome any
issues with the these meta-heuristic approaches. Although the various tables and figures
presented in this paper may be useful to practitioners when selecting an algorithm, it may
be more beneficial to select a suitable one using a formal multi-criteria decision-making
(MCDM) approach that allows quantitative comparison of the various optimisation algo-
rithms based on their applicability on a specific type of engineering design problem. As a
consequence, future study will evaluate various algorithms using MCDM techniques in
order to provide a fair analysis that might be used to improve algorithm selection.

5. Conclusions

The complex mechanical design problems involve multiple objectives with a combina-
tion of variables along with the consideration of a multitude of constraints and boundary
conditions. Therefore, the problem of identifying optimum design for a specific application
involves rigorous exploration of the design space which might not be feasible within a
practical time-frame. For this purpose, metaheuristics can be applied to such problems to
search the design space with a guiding heuristic that ensures a near-optimal acceptable
solution within a reasonable time-frame. In this research study, eight novel metaheuristic
algorithms, namely AVOA, RUN, HBBO, CryStAl, GBO, GTO, SNS, and SSA, are applied
on five different mechanical component design problems and their ability to choose accept-
able solutions across multiple runs of optimisation, the robustness of the algorithms and
computation time are calculated. From the performance comparison, it was understood
that the SNS, GBO and GTO algorithms perform well across all mechanical component
design problems, and AVOA algorithm has good performance in terms of computation
time. In machinery component design optimisation problems, the SNS method is shown to
be the best suited choice in terms of solution quality, robustness, and convergence speed
with given parameter settings.
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Appendix A

Appendix A.1. Tension/Compression Spring Design Problem

The objective function of the tension/compression spring design problem can be written
as follows:

f (~x)min = x2
1x2x3 + 2x2

1x2

Subject to: h1(~x) = 1 − x3
2x3/71785x4

1 ≤ 0 , h2(~x) = 4x2
2 − x1x2/12566(x2x3

1 − x4
1) + 1/5180x2

1 ≤ 0 ,
h3(~x) = 1 − 140.45x1/x3

2x3 ≤ 0 and h4(~x) = x1 + x2/1.5 − 1 ≤ 0 .

Variable ranges: 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, and 2 ≤ x3 ≤ 15.

Appendix A.2. Crane Hook Design Problem

The objective function of the crane hook design problem can be written as follows:

f (~x)min = πx2
1 − x2

2x3

Subject to: g1(~x) = oA − Sy ≤ 0 , g2(~x) = oB − Sy ≤ 0 and g3(~x) = x2 − x1 ≤ 0 .
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where F = 100, Sy = 430, h = x1 − x2, R = x1 + x2/2, rn = h/log(x1/x2), e = R − rn, M = F × R,
co = x1 − rn, ci = rn − x2, Area = x3 × h, oA = M × co/Area × e × x1 and oB = M × ci/Area × e × x2.

Variable ranges: 3 ≤ x1 ≤ 5, 1.5 ≤ x2 ≤ 2 and 0.2 ≤ x3 ≤ 1.5.

Appendix A.3. Reduction Gear Design Problem

The objective function of the reduction gear design problem can be written as follows:

f (~x)min = 0.7854x1x2
2(3.3333x2

3 + 14.9334x3 − 43.0934) − 1.5079x1(x2
6 + x2

7) + 7.477
(x3

6 + x3
7) + 0.7854(x4x2

6 + x5x2
7)

Subject to: g1(~x) = 27/x1x2
2x3 − 1 ≤ 0 , g2(~x) = 397.5/x1x2

2x2
3 − 1 ≤ 0 , g3(~x) = 1.93x3

4/x2x3x4
6 − 1 ≤ 0 ,

g4(~x) = 1.93x3
5/x2x3x4

7 − 1 ≤ 0 , g5(~x) = 1/85x3
6

√
(745x4/x2x3)2 + 16.9× 106 − 1 ≤ 0 ,

g6(~x) = 1/85x3
7

√
(745x5/x2x3)2 + 157.5× 106 − 1 ≤ 0 , g7(~x) = x2x3/40 − 1 ≤ 0 ,

g8(~x) = 5x2/x1 − 1 ≤ 0 , g9(~x) = x1/12x2 − 1 ≤ 0 , g10(~x) = 1.5x6 + 1.9/x4 − 1 ≤ 0 and
g11(~x) = 1.1x7 + 1.9/x5 − 1 ≤ 0 .

Variable ranges: 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3,
2.9 ≤ x6 ≤ 3.9 and 5 ≤ x7 ≤ 5.5.

Appendix A.4. Pressure Vessel Design Problem

The objective function of the pressure vessel design problem can be written as follows:

f (~x)min = 0.6224x1x3x4 + 1.7781x2
3x2 + 3.1661x2

1x4 + 19.84x2
2x4

Subject to: g1(~x) = −x1 + 0.0193x3 ≤ 0 , g2(~x) = −x2 + 0.00954x3 ≤ 0 ,
g3(~x) = −πx4x2

3 − 4/3πx3
3 + 1296000 ≤ 0 and g4(~x) = x4 − 240 ≤ 0 .

Variable ranges: 0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200 and 10 ≤ x4 ≤ 200.

Appendix A.5. Hydrostatic Thrust Bearing Design Problem

The objective function of the Hydrostatic thrust bearing problem (for SAE 20 type grade
oil) can be written as follows:

f (~x)min = x4Po/0.7 + E f

Subject to: g1(~x) = W − 101,000 ≥ 0 , g2(~x) = 1000 − Po ≥ 0 , g3(~x) = 50 − (2 × (10P −
560)) ≥ 0 , g4(~x) = h − 0.001 ≥ 0 , g5(~x) = x1 − x2 ≥ 0 , g6(~x) = 0.001− 0.0307/(386.4 × Po)×
(x4/(2 × π × x1 × h)) ≥ 0 and g7(~x) = 5000 − W/(π × (x2

1 − x2
2) ≥ 0

where P = (log10log10(8.122 × 106 × x3 + 0.8)− 10.04)/− 3.55, E f = 9336 × x4 × 0.0307 × 0.5 × 2 ×
(10P − 560), h = (2 × π × 750/60)2 × 2 × π × x3/E f × (x4

1/4 − x4
2/4), Po = [(6 × x3 × x4)/(π × h3)] ×

[ln(x1/x2)] and W = (πPo/2)× [(x2
1 − x2

2)× (ln(x1/x2)].

Variable ranges: 1 ≤ x1 ≤ 16, 1 ≤ x2 ≤ 16, 1 × 10−6 ≤ x3 ≤ 16 × 10−6 and 1 ≤ x4 ≤ 16.
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