Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER)

Journal article


Sharma, L., Kumar, N., Parui, A., Das, R., Kumar, R., Tiwary, C.S., Singh, A.K., Halder, A. and Biswas, K. (2021). Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER). Nano Research. https://doi.org/10.1007/s12274-021-3802-4
AuthorsSharma, L., Kumar, N., Parui, A., Das, R., Kumar, R., Tiwary, C.S., Singh, A.K., Halder, A. and Biswas, K.
Abstract

Oxygen evolution reaction (OER) is the key step involved both in water splitting devices and rechargeable metal-air batteries, and hence, there is an urgent need for a stable and low-cost material for efficient OER. In the present investigation, Co-Fe-Ga-Ni-Zn (CFGNZ) high entropy alloy (HEA) has been utilized as a low-cost electrocatalyst for OER. Herein, after cyclic voltammetry activation, CFGNZ-nanoparticles (NPs) are covered with oxidized surface and form high entropy (oxy) hydroxides (HEOs), exhibiting a low overpotential of 370 mV to achieve a current density of 10 mA/cm2 with a small Tafel slope of 71 mV/dec. CFGNZ alloy has higher electrochemical stability in comparison to state-of-the art RuO2 electrocatalyst as no degradation has been
bserved up to 10 h of chronoamperometry. Transmission electron microscopy (TEM) studies after 10 h of long-term
chronoamperometry test showed no change in the crystal structure, which confirmed the high stability of CFGNZ. The density functional theory (DFT) based calculations show that the closeness of d(p)-band centers to the Fermi level (EF) plays a major role in determining active sites.This work highlights the tremendous potential of CFGNZ HEA for OER, which is the primary reaction involved in water splitting.

Keywordshigh entropy alloy, cyclic voltammetry activation, oxygen evolution reaction, electrocatalyst, nanocrystalline catalyst
Year2021
JournalNano Research
PublisherSpringer
Digital Object Identifier (DOI)https://doi.org/10.1007/s12274-021-3802-4
Web address (URL)https://link.springer.com/article/10.1007%2Fs12274-021-3802-4
Publication dates
Print09 Sep 2021
Publication process dates
Accepted03 Aug 2021
Deposited15 Sep 2021
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/8xx8x

Restricted files

Accepted author manuscript

  • 14
    total views
  • 1
    total downloads
  • 5
    views this month
  • 0
    downloads this month

Export as

Related outputs

Nanomaterials based Biosensing: Methods and principle of detection
Kumar, N., Goel, G. and Goel, S. (2022). Nanomaterials based Biosensing: Methods and principle of detection. in: Joshi SN and Chandra P (ed.) Advanced Micro and Nano Manufacturing Technologies - Applications in Biochemical and Biomedical Engineering Springer Nature.
Electrooxidation of Hydrazine Utilizing High Entropy Alloys: Assisting Oxygen Evolution Reaction at the Thermodynamic Voltage
Kumar, N., Dhakar, S., Parui, A., Gakhad, P., Singh, A.K., Biswas, K., Tiwary, C.S. and Sharma, S. (2021). Electrooxidation of Hydrazine Utilizing High Entropy Alloys: Assisting Oxygen Evolution Reaction at the Thermodynamic Voltage. ACS Catalysis.
Role of Thermal Spray in Combating Climate Change
Viswanathan, V., Kumar, N., Goel, G., Matthews, A. and Goel, S. (2021). Role of Thermal Spray in Combating Climate Change. Emergent Materials.
A Perspective on the Catalysis Using the High Entropy Alloys
Kumar, N., Biswas, K., Yeah, J-W., Sharma, S. and Tiwary, C.S. (2021). A Perspective on the Catalysis Using the High Entropy Alloys. Nano Energy. https://doi.org/10.1016/j.nanoen.2021.106261
Large scale manufacturing route to metamaterial coatings using thermal spray techniques and their response to solar radiation
Faisal, N.H., Sellami, N., Venturi, F., Hussain, T., Mallick, T., Muhammad-Sukki, F., Bishop, A., Upadhyaya, H., Kumar, N. and Goel, S. (2021). Large scale manufacturing route to metamaterial coatings using thermal spray techniques and their response to solar radiation. Emergent Materials. https://doi.org/10.1007/s42247-021-00252-z
Nature inspired materials: Emerging trends and prospects
Kumar, N., Goel, G., Hawi, S. and Goel, S. (2021). Nature inspired materials: Emerging trends and prospects . NPG Asia Materials. 15 (56). https://doi.org/10.1038/s41427-021-00322-y
Emergence of machine learning in the development of high entropy alloy and their prospects in advanced engineering applications
Kumar, N., Goel, G. and Goel, S. (2021). Emergence of machine learning in the development of high entropy alloy and their prospects in advanced engineering applications. Emergent Materials. https://doi.org/10.1007/s42247-021-00249-8
Easy scalable avenue of anti-bacterial nanocomposites coating containing Ag NPs prepared by cryomilling
Katiyar, N.K. and Biswas, K. (2021). Easy scalable avenue of anti-bacterial nanocomposites coating containing Ag NPs prepared by cryomilling. Materials Today Communications. 26, p. 102020. https://doi.org/10.1016/j.mtcomm.2021.102020
Potential pathway for recycling of the paper mill sludge compost for brick making
Goel, G., Vasić, M.V., Kumar, N., Subramanian Kala, K., Pezo, M. and Dinakar, P. (2021). Potential pathway for recycling of the paper mill sludge compost for brick making. Construction and Building Materials. 278. https://doi.org/10.1016/j.conbuildmat.2021.122384
Cryomilling as environmentally friendly synthesis route to prepare nanomaterials
Kumar, N., Biswas, Krishanu and Tiwary, C. S. (2020). Cryomilling as environmentally friendly synthesis route to prepare nanomaterials. International Materials Reviews. 66 (7), pp. 493-532. https://doi.org/10.1080/09506608.2020.1825175
Formic acid and methanol electro-oxidation and counter hydrogen production using nano high entropy catalyst
Kumar, N., Nellaiappan, S., Kumar, R., Malviya, K.D., Pradeep, K.G., Singh, A.K., Sharma, S., Tiwary, C.S. and Biswas, K. (2020). Formic acid and methanol electro-oxidation and counter hydrogen production using nano high entropy catalyst. Materials Today Energy. 16, p. 100393. https://doi.org//10.1016/j.mtener.2020.100393
Multi-component (Ag–Au–Cu–Pd–Pt) alloy nanoparticle-decorated p-type 2D-molybdenum disulfide (MoS2) for enhanced hydrogen sensing
Urs, K.M.B., Katiyar, N.K., Kumar, R., Biswas, K., Singh, A.K., Tiwary, C.S. and Kamble, V. (2020). Multi-component (Ag–Au–Cu–Pd–Pt) alloy nanoparticle-decorated p-type 2D-molybdenum disulfide (MoS2) for enhanced hydrogen sensing. Nanoscale. 12 (22), pp. 11830-11841. https://doi.org/10.1039/d0nr02177f
High-Entropy Alloys as Catalysts for the CO2 and CO Reduction Reactions: Experimental Realization
Nellaiappan, S., Katiyar, N.K., Kumar, R., Parui, A., Malviya, K.D., Pradeep, K.G., Singh, A.K., Sharma, S., Tiwary, C.S. and Biswas, K. (2020). High-Entropy Alloys as Catalysts for the CO2 and CO Reduction Reactions: Experimental Realization. ACS Catalysis. 10 (6), pp. 3658-3663. https://doi.org/10.1021/acscatal.9b04302
Cryomilling: An environment friendly approach of preparation large quantity ultra refined pure aluminium nanoparticles
Kumar, N. and Biswas, K. (2019). Cryomilling: An environment friendly approach of preparation large quantity ultra refined pure aluminium nanoparticles. Journal of Materials Research and Technology. 8 (1), pp. 63-74. https://doi.org/10.1016/j.jmrt.2017.05.017
Stabilization of a Highly Concentrated Colloidal Suspension of Pristine Metallic Nanoparticles
Kumar, N., Biswas, K., Tiwary, C.S., Machado, L.D. and Gupta, R.K. (2019). Stabilization of a Highly Concentrated Colloidal Suspension of Pristine Metallic Nanoparticles. Langmuir. 35 (7), pp. 2668-2673. https://doi.org/10.1021/acs.langmuir.8b03401
The Effect of Configurational Entropy of Mixing on the Design and Development of Novel Materials
Biswas, K. and Kumar, N. (2019). The Effect of Configurational Entropy of Mixing on the Design and Development of Novel Materials. Proceedings of the Indian National Science Academy. 86 (3), pp. 1127-1134. https://doi.org/10.16943/ptinsa/2019/49674
Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots
Kumar, N., Tiwary, C. and Biswas, K. (2018). Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots. Journal of Materials Science. 53 (19), pp. 13411-13423. https://doi.org/10.1007/s10853-018-2485-z
Effect of Al Addition on the Microstructural Evolution of Equiatomic CoCrFeMnNi Alloy
Kumar, J., Kumar, N., Das, S., Gurao, N. and Biswas, K. (2018). Effect of Al Addition on the Microstructural Evolution of Equiatomic CoCrFeMnNi Alloy. Transactions of the Indian Institute of Metals. 71 (11), pp. 2749-2758. https://doi.org/10.1007/s12666-018-1443-4
Green synthesis of Ag nanoparticles in large quantity by cryomilling
Kumar, N., Biswas, K. and Gupta, R. K. (2016). Green synthesis of Ag nanoparticles in large quantity by cryomilling. RSC Advances. 6 (112), pp. 111380-111388. https://doi.org/10.1039/c6ra23120a