The Effect of Configurational Entropy of Mixing on the Design and Development of Novel Materials

Journal article


Biswas, K. and Kumar, N. (2019). The Effect of Configurational Entropy of Mixing on the Design and Development of Novel Materials. Proceedings of the Indian National Science Academy. 86 (3), pp. 1127-1134. https://doi.org/10.16943/ptinsa/2019/49674
AuthorsBiswas, K. and Kumar, N.
Abstract

The configurational entropy of mixing (∆Smix) has a profound influence on the stability of various phases in different
materials at intermediate and high temperatures. Recently, it has been observed that ∆Smix can be used as an important tool
to design novel multicomponent materials with fascinating properties. ∆Smix affects ∆Gmix and tends to stabilize the FCC/
BCC/HCP multicomponent solid solutions over brittle phases including compounds. This opens up vistas to design novel
solid solution-based materials with improved mechanical, functional properties. Accordingly, multicomponent and
multiprinciple alloys were developed in 2004, and subsequently, novel ceramics and polymers have been designed. The
present paper is intended to provide an insight into the role of ∆Smix to design novel metallic, ceramic as well as polymeric
materials.

Year2019
JournalProceedings of the Indian National Science Academy
Journal citation86 (3), pp. 1127-1134
PublisherIndian National Science Academy
ISSN0370-0046
Digital Object Identifier (DOI)https://doi.org/10.16943/ptinsa/2019/49674
Publication dates
Online10 Jul 2019
Publication process dates
Accepted16 May 2020
Deposited03 Feb 2021
Accepted author manuscript
License
File Access Level
Open
Additional information

This is a post-peer-review, pre-copyedit version of an article published in Proceedings of the Indian National Science Academy. The final authenticated version is available online at: http://dx.doi.org/10.16943/ptinsa/2019/49674

Permalink -

https://openresearch.lsbu.ac.uk/item/8vw5q

Download files


Accepted author manuscript
Nirmal_pinsa.pdf
License: CC BY 4.0
File access level: Open

  • 3
    total views
  • 6
    total downloads
  • 3
    views this month
  • 2
    downloads this month

Export as

Related outputs

Easy scalable avenue of anti-bacterial nanocomposites coating containing Ag NPs prepared by cryomilling
Katiyar, N.K. and Biswas, K. (2021). Easy scalable avenue of anti-bacterial nanocomposites coating containing Ag NPs prepared by cryomilling. Materials Today Communications. 26, p. 102020. https://doi.org/10.1016/j.mtcomm.2021.102020
Potential pathway for recycling of the paper mill sludge compost for brick making
Goel, G., Vasić, M.V., Kumar, N., Subramanian Kala, K., Pezo, M. and Dinakar, P. (2021). Potential pathway for recycling of the paper mill sludge compost for brick making. Construction and Building Materials. 278. https://doi.org/10.1016/j.conbuildmat.2021.122384
Formic acid and methanol electro-oxidation and counter hydrogen production using nano high entropy catalyst
Kumar, N., Nellaiappan, S., Kumar, R., Malviya, K.D., Pradeep, K.G., Singh, A.K., Sharma, S., Tiwary, C.S. and Biswas, K. (2020). Formic acid and methanol electro-oxidation and counter hydrogen production using nano high entropy catalyst. Materials Today Energy. 16, p. 100393. https://doi.org//10.1016/j.mtener.2020.100393
Multi-component (Ag–Au–Cu–Pd–Pt) alloy nanoparticle-decorated p-type 2D-molybdenum disulfide (MoS2) for enhanced hydrogen sensing
Urs, K.M.B., Katiyar, N.K., Kumar, R., Biswas, K., Singh, A.K., Tiwary, C.S. and Kamble, V. (2020). Multi-component (Ag–Au–Cu–Pd–Pt) alloy nanoparticle-decorated p-type 2D-molybdenum disulfide (MoS2) for enhanced hydrogen sensing. Nanoscale. 12 (22), pp. 11830-11841. https://doi.org/10.1039/d0nr02177f
High-Entropy Alloys as Catalysts for the CO2 and CO Reduction Reactions: Experimental Realization
Nellaiappan, S., Katiyar, N.K., Kumar, R., Parui, A., Malviya, K.D., Pradeep, K.G., Singh, A.K., Sharma, S., Tiwary, C.S. and Biswas, K. (2020). High-Entropy Alloys as Catalysts for the CO2 and CO Reduction Reactions: Experimental Realization. ACS Catalysis. 10 (6), pp. 3658-3663. https://doi.org/10.1021/acscatal.9b04302
Cryomilling as environmentally friendly synthesis route to prepare nanomaterials
Kumar, N., Biswas, Krishanu and Tiwary, C. S. (2020). Cryomilling as environmentally friendly synthesis route to prepare nanomaterials. International Materials Reviews. https://doi.org/10.1080/09506608.2020.1825175
Nanomaterials based Biosensing: Methods and principle of detection
Kumar, N., Goel, G. and Goel, S. (2020). Nanomaterials based Biosensing: Methods and principle of detection. in: Joshi SN and Chandra P (ed.) Advanced Micro and Nano Manufacturing Technologies - Applications in Biochemical and Biomedical Engineering Springer Nature.
Cryomilling: An environment friendly approach of preparation large quantity ultra refined pure aluminium nanoparticles
Kumar, N. and Biswas, K. (2019). Cryomilling: An environment friendly approach of preparation large quantity ultra refined pure aluminium nanoparticles. Journal of Materials Research and Technology. 8 (1), pp. 63-74. https://doi.org/10.1016/j.jmrt.2017.05.017
Stabilization of a Highly Concentrated Colloidal Suspension of Pristine Metallic Nanoparticles
Kumar, N., Biswas, K., Tiwary, C.S., Machado, L.D. and Gupta, R.K. (2019). Stabilization of a Highly Concentrated Colloidal Suspension of Pristine Metallic Nanoparticles. Langmuir. 35 (7), pp. 2668-2673. https://doi.org/10.1021/acs.langmuir.8b03401
Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots
Kumar, N., Tiwary, C. and Biswas, K. (2018). Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots. Journal of Materials Science. 53 (19), pp. 13411-13423. https://doi.org/10.1007/s10853-018-2485-z
Effect of Al Addition on the Microstructural Evolution of Equiatomic CoCrFeMnNi Alloy
Kumar, J., Kumar, N., Das, S., Gurao, N. and Biswas, K. (2018). Effect of Al Addition on the Microstructural Evolution of Equiatomic CoCrFeMnNi Alloy. Transactions of the Indian Institute of Metals. 71 (11), pp. 2749-2758. https://doi.org/10.1007/s12666-018-1443-4
Green synthesis of Ag nanoparticles in large quantity by cryomilling
Kumar, N., Biswas, K. and Gupta, R. K. (2016). Green synthesis of Ag nanoparticles in large quantity by cryomilling. RSC Advances. 6 (112), pp. 111380-111388. https://doi.org/10.1039/c6ra23120a