Low-Cost High Entropy Alloy (HEA) for High-Efficiency Oxygen Evolution Reaction (OER)

Lalita Sharma^{a‡}, Nirmal Kumar Katiyar^{bc‡}, Arko Parui^{d‡}, Rakesh Das^e, Ritesh Kumar^d, Chandra Sekhar Tiwary^e*, Abhisek K. Singh^d*, Aditi Halder^a*, Krishanu Biswas^b*

^aSchool of Basic Sciences, Advanced Materials Research Centre (AMRC), Indian Institute of Technology Mandi (H.P), Kamand, Mandi – 175005, INDIA

^bDepartment of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur-208016 INDIA

^cSchool of Engineering, London South Bank University, 103 Borough Road, London, SE10 AA, UK

^dMaterials Research Centre, Indian Institute of Science, Bangalore-560012, INDIA

^eMetallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur-382355, INDIA

ABSTRACT

Oxygen evolution reaction (OER) is the key step involved both in water splitting devices and rechargeable metal-air batteries, and hence, there is an urgent need for a stable and low-cost material for efficient OER. In the present investigation, Co-Fe-Ga-Ni-Zn: cobalt-iron-gallium-nickel-zinc (CFGNZ) high entropy alloy (HEA) has been utilized as a low-cost electrocatalyst for OER. Herein, after cyclic voltammetry activation, CFGNZ-nanoparticles (NPs) are covered with oxidized surface and form high entropy (oxy) hydroxides (HEO`s), exhibiting a low overpotential of 370 mV to achieve a current density of 10 mA cm⁻² with a small Tafel slope of 71 mV dec⁻¹. CFGNZ alloy has exceptional long-term stability up to 10 h as compared to state-of-art RuO₂ electrocatalyst. Transmission electron microscopic (TEM) studies after 10 h of long-term Chronoamperometry showed no change in the crystal structure, which confirmed the high stability of CFGNZ. The density functional theory (DFT) based calculations show that the closeness of d (p) - band centers to the Fermi level (E_F) plays a major role in determining active sites. This work highlights the tremendous potential of CFGNZ high entropy alloy for OER, which is the primary reaction involved in water splitting.

[‡]Authors have contributed equally in this work.

Keywords: High entropy alloy; Cyclic voltammetry activation; Oxygen evolution reaction; Electrocatalyst, Nanocrystalline catalyst

INTRODUCTION

Electrochemical water splitting is viewed as one of the simplest and environmentally benign approaches because of its sustainable and zero carbon emission attribute[1]. Electrocatalytic oxidation of water to oxygen (O₂) faces challenges due to huge overpotential in oxygen evolution reaction (OER), which is the major roadblock for the storage of energy from renewable sources in the form of molecular fuels like H_2 or hydrocarbons[2]. Water splitting efficiency is further limited by sluggish kinetics in anodic OER, and the absence of suitable cost-effective catalytic materials. Hence, a lot of effort has been put forward for the development of the energy-efficient electrocatalysts.

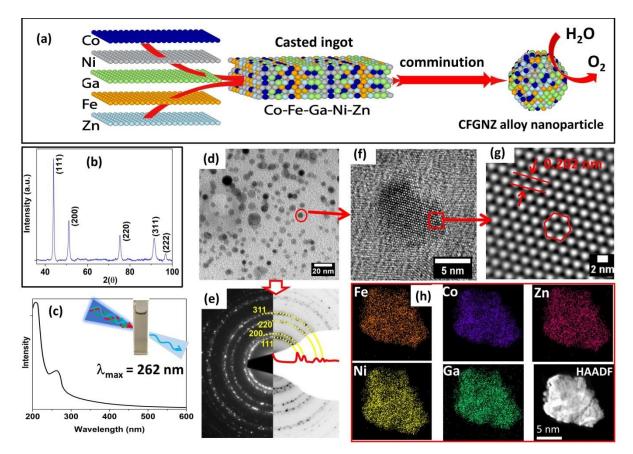
Noble metal-based state of the art OER electrocatalysts *i.e.* IrO₂ and RuO₂ are actively used for commercial applications[3]. However, scarcity and high cost of noble metal-based electrocatalysts restrict their use in large scale applications. Therefore, the utmost need is to develop a non-noble metal-based electrocatalysts to increase the overall efficiency of the water-splitting. Recently, a lot of efforts have been devoted to synthesize the transition metalbased alloys as well as their carbides, boride, and sulphides as an effective electrocatalyst for OER[4]. Nanocrystalline high entropy alloys offer a promising way of tuning their catalytic efficiency and durability by tailoring multi-element compositions[5]. Recently, HEAs have been utilized for electrochemical catalyst for CO₂ reduction, OER and HER (hydrogen evolution reaction) due to their unique properties[6]. Our previous studies have shown Ag-Au-Pt-Pd-Cu alloys having higher stability and efficiency for CO₂ reduction[7] and electrooxidation for Formic acid[8]. Here, we proposed a nanocrystalline HEA electrocatalyst utilizing low-cost transition metals for OER, consisting of Co-Fe-Ga-Ni-Zn in equiatomic proportions; and henceforth denoted as CFGNZ alloy. The nanocrystalline CFNGZ alloy catalyst is prepared using the easily scalable casting-cum-comminution (CCC) method[9]. The OER performance, along with its stability and durability, have been tested and compared with state-of-art noble metal-based (RuO₂) electrocatalyst. In this work precious metal free

HEA is reported as excellent OER catalyst which is noble metal free and new catalyst report in series of OER electrocatalyst and very active in comparison to standard IrO_2 and RuO_2 catalyst.[3] HEA research is very hot topic and report of HEA with current composition is new and not explored much for catalysis. To rationalize the high activity of the CFGNZ alloy, the first-principles-based density functional theory (DFT) calculations were carried out, which demonstrate the important role played by the positions of d(p)-band centres of the surface atoms.

EXPERIMENTAL SECTION

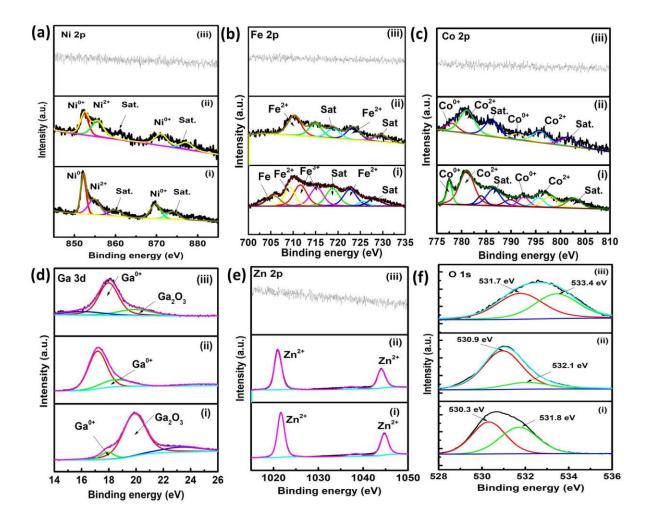
The pure metals; Co, Fe, Ni, Ga, Zn were purchased from Alfa Aesar with 99.99% purity. KOH (assay > 85 %) was obtained from Hi-Media laboratories. Nafion (5%) solution is used as a binder in making the catalyst ink. The nanoparticles of HEA have been prepared by the cryomilling method, and the advantage of this method to avoid the cold welding of two metallic particles by deformation. It is happening due to the extremely low temperature, where the cold welding predominantly supressed; detailed preparation can be seen elsewhere[10]. All metals in equi-atomic proportions have been melted in a vacuum arc melting furnace and cast as an ingot by this technique. The as prepared ingot was melted in the furnace 2-3 times to ensure chemical homogeneity. Subsequently, the cast ingot was vacuum sealed in the quartz tube and homogenized at 1000 °C for 24 h. The ingot has subsequently been parted into small pieces for mechanical milling at extremely low temperatures utilizing liquid nitrogen as a coolant to obtain the nanocrystalline CFGNZ for six hours[11].

The UV–visible spectrometer (Thermo Scientific, UK) was utilized to record the surface plasmon resonance of nanocrystalline HEA. The Panalytical XPert empyrean system was used to study the crystallographic phase using X-rays (Cu K $\alpha \lambda = 1.54046$ Å). The particle size, elemental mapping, and their morphologies were investigated using a Transmission


electron microscope (FEI, Titan G² 60 operated at 300 kV). X-ray photoelectron spectroscopy (XPS) was used to know about the chemical states of the elements at the surface by using Nexsa instrument (Thermo Fisher Scientific) incorporating Al Ka as a source of X-ray. Electrochemical measurements have been performed in a standard three-electrode set-up with Metrohm, Autolab electrochemical workstation. The 5mm GCE (glassy carbon electrode) is modified with catalyst ink utilized as a working electrode. Pt wire is used as the counter electrode, and Ag/AgCl is used as a reference electrode. All experiments have been carried out with Ag/AgCl as a reference electrode, which is converted to RHE by using Nernst equation; $E_{RHE} = E_{exp.} + 0.059pH + E_{Ag/AgCl}^{0}$, where $E_{Ag/AgCl}^{0} = 0.19V$ is the standard reduction potential of Ag/AgCl at room temperature. 1M KOH (potassium hydroxide) aqueous solution with alkaline pH was used as electrolyte which was purged with inert N₂ gas prior to experiments. The catalyst ink was made by mixing 10 mg of catalyst in 500 µl of DMF (dimethylformamide) solvent and 20 µl of Nafion solution (5%) as binder followed by sonication for 30 min. The 10 µl of catalyst ink was drop casted on the 5 mm diameter of GCE with a catalyst loading of 0.981 mg cm⁻², respectively. The catalyst loading remained constant in case of other catalysts as well. Prior to OER (Oxygen Evolution Reaction) activity, catalyst surface was activated with the help of CV (cyclic voltammetry). CV activation scans were conducted in a potential window from 0.48 V to 1.50 V vs RHE at a scan rate of 50 mV/sec. Linear scan voltammetry (LSV) was performed in the potential window from 0.90 V to 2.0 V vs RHE with a scan rate of 5 mV/sec. A cyclic durability test was performed in the potential window from 1.21 V to 1.56 V vs RHE at a scan rate of 50 mV/sec up to 6000 CV cycles. The Tafel plots were plotted by taking the linear region of polarization curves, which were fitted in accordance with Butler-Volmer equation ($\eta = b \log d$ i + a, where *i* is current density, *b* is Tafel slope, *a* is the intercept) to find out the mechanism of the reaction.

The Vienna ab-initio simulation (VASP 5.4.4) package[12] was utilized for performing all the first-principles-based density functional theory (DFT) calculations. For describing the interactions between electrons and ions, the all-electron projector augmented wave (PAW) pseudo potentials were utilized. The Perdew-Burke-Ernzerhof (PBE) functional of the generalized gradient approximation (GGA) was used for approximating electronic exchange and correlation effects[13]. An energy cut-off of 500 eV was used for selecting the plane waves. All the structures were optimized using a conjugate gradient scheme until the energies and components of forces reached 10⁻⁵ eV and 0.01 eV Å⁻¹, respectively. A vacuum of 18 Å was included along the *c*-direction to prevent interactions between the periodic images. The Brillouin zone was sampled by a 2x4x1 Monkhorst-Pack grid for slab calculations. The bottom two layers were frozen, and only the topmost layer was allowed to relax, out of the total three layers in the CFGNZ slab, to mimic the bulk behaviour. The randomly arranged sites of the disordered CFGNZ alloy was simulated by generating the special quasi-random structure (SQS) from the "mcsqs" utility of the Alloy Theoretic Automated Toolkit (ATAT) code[14]. Such quasi-random structures have been successful in reproducing catalytic and other properties of HEAs[8].^{[15],[7]}. The 5x3x1 supercell of Ni (111) was taken for generating the CFGNZ alloy structure (Fig. S1 b & c), containing 120 atoms, with the constituent elements – Co, Fe, Ga, Ni, and Zn, being equi-proportional (20 % each) in composition.

RESULTS AND DISCUSSION

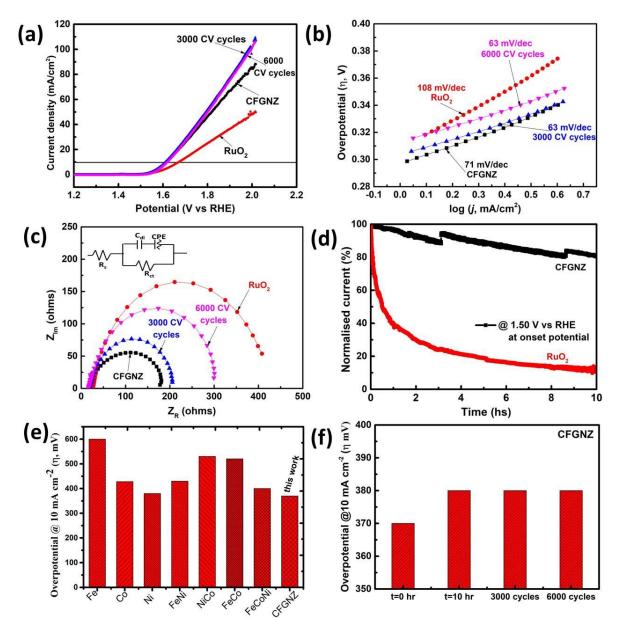

A schematic of nano-crystalline CFGNZ alloy preparation and OER reaction over the nanoparticle surface depicted in the Fig. 1(a). The crystallographic phase identification of the nano-crystalline CFGNZ alloy has been determined using an X-ray diffraction pattern, and it is found to be face-centered cubic (FCC), as shown in Fig. 1(b). The average particle size of HEA NPs is 8±4 nm; estimated using about 500 particles from bright-field TEM images,

(Fig. 1(d)). It also possesses the diffraction rings corresponding to the FCC phase, as shown in Fig. 1(e). High resolution TEM (HR-TEM) images of NPs of CFGNZ have shown in Fig. 1(f) and their lattice d-spacing is measured after FFT (Fast Fourier Transformation) processing of the image, shown in Fig. 1(g). It is $(d_{(111)}= 0.202 \text{ nm})$ marked over the image, which has also been corroborated with the X-ray diffraction pattern. Fig. 1(h) shows the elemental maps of a single CFGNZ alloy NP, indicating that the nanoparticles are chemically homogenous. The metallic nano-crystalline materials reveal the surface plasmon resonance (SPR) phenomena on electromagnetic radiation exposure, which appeared for CFGNZ alloy at 262 nm, (Fig. 1(c)). Therefore, the prepared CFGNZ alloy is a homogeneous nanocrystalline material, suitable for the electrochemical catalyst materials.

Fig. 1: (a) Schematic of alloy preparation for nano-crystalline CFGNZ and of catalytic reaction, (b) X-ray diffraction pattern of nano-crystalline CFGNZ alloy powder; (c) Surface plasmon resonance peak of nanoparticles (UV-visible); (d) Bright field (BF) TEM image of CFGNZ nanoparticles; (e) corresponding ring diffraction pattern; (f) single nanoparticle HRTEM; (g) FFT filtered image of nanoparticle corresponding to image f; (h) elemental mapping of a single nanoparticle.

X-ray photoelectron spectroscopy (XPS) was performed for as-synthesized CFGNZ alloy without any treatment, post-CV-activation, and after 10 h of post Chronoamperometry studies. XPS wide scan spectra of the as-prepared CFGNZ alloy and post CV activation displayed in Fig. S2 showed the presence of all five elements. However, after 10 h of Chronoamperometry studies, only Ga remained on the surface, and signal for other elements remained very weak. All the spectra and peak fitting were carried out by taking the adventitious binding energy of C 1s at a binding energy of 284.8 eV as reference as shown in Fig. S3 in In HEA, Ni 2p spectra confirmed the coexistence of Ni⁰⁺ (Ni 2p_{3/2}, 852.2 eV; Ni $2p_{1/2}$, 870.2 eV) and Ni²⁺ on the surface as shown in Fig. 2(a). The oxidation state of the nickel at the surface of the region can be determined by the binding energies and chemical shift in the XPS spectra[16].

Fig. 2: High resolution deconvoluted spectra of (a) Ni 2p ;(b) Fe 2p;(c) Co 2p ;(d) Ga 3d; (e) Zn 2p; (f) O 1s for CFGNZ alloy, after CV activation of 150 cycles and after 10 h of Chronoamperometry studies in 1 M KOH electrolyte. ((i) CFGNZ alloy (ii) after CV activation (iii) after Chronoamperometry testing)


The peak corresponding to metallic Ni⁰⁺ is clearly higher than Ni²⁺ in the case of HEA, whereas after CV activation peak corresponding to Ni²⁺ is approximately equal to the metallic nickel peak confirmed the oxide formation on the surface. Enhanced intensity of Ni²⁺ peak at a binding energy of 855.6 eV after CV activation confirmed oxide formation in NiO (Ni²⁺), which contribute to OER activities. For Fe 2p high-resolution spectra, Fe is present in metallic as well as in oxide form in the case of HEA as shown in Fig. 2(b). However, after CV activation, only the oxide form of Fe sustains, and after Chronoamperometry of 10 h, iron signal becomes very weak and no traces of iron have been left at the surface, confirmed by XPS spectra. In CFGNZ alloy, the binding energies obtained at the peak position of 706.7 eV $(2p_{3/2})$ confirmed the Fe⁰⁺ oxidation state, whereas the absence of this peak after CV activation confirmed the complete iron oxide formation on the surface, confirmed by characteristic peaks for Fe₂O_{3[17]} as Fe $2p_{1/2}$ and Fe $2p_{3/2}$ peaks at 723.4 eV and 710.2 eV, respectively. Cobalt (Co) in HEA as shown in Fig. 2(c) found predominantly in the form of Co as metal confirmed by the peak positions at binding energies of 777.5 eV $(2p_{3/2})$ and 792.5 eV $(2p_{1/2})$, respectively. Along with metallic Co⁰⁺, Co⁺² oxidation state was also confirmed by peak positions at binding energies of 781.0 eV $(2p_{3/2})$ and 795.4 eV $(2p_{1/2})[18]$. Along with the Co (0, 2+) oxidation state, other peak formation at the binding energy positions of 786.4 eV and 802.4 eV belongs to the satellite peaks. XPS spectra of Ga in CFGNZ alloy have shown an interesting feature, as shown in Fig. 2(d). Ga 3d emission spectra were deconvoluted into two main peaks, one centred at 20.1 eV is expected of the Ga (3+) oxidation state (stoichiometric Ga₂O₃ (Ga III)[19]), and a second one centred at 18.0 eV corresponds to Ga (0) oxidation state. Ga was present in the form of metallic as well as in the oxide forms in the case of as synthesized HEA and contributed more towards OER. One more

peak in as synthesized HEA Ga 3d spectra at 23.3 eV is associated with the core level of O 2s[20]. After long term OER stability testing, Ga is the only element that remained at the surface after 10 h of stability test in both Ga (0) as well as Ga (III) oxidation state. In the case of XPS spectra of Zn, as shown in Fig. 2(e), the peaks at binding energies of 1044.8 eV and 1021.8 eV are assigned to the Zn $2p_{1/2}$ and Zn $2p_{3/2}$ peaks of Zn²⁺, respectively[21]. After CV activation, there was no change in the oxidation state of Zn. Availability of the oxides of Ga at the top of the surface became more feasible after CV activation as a huge enhancement in the OER activities was observed due to the oxide (hydroxides). The formation of the oxides at the surface after CV activation can be further confirmed with the help of XPS spectra of O 1s in Fig. 2 (f). Dual peak in O 1s XPS is indicative of the abundant surface or subsurface oxides and hydroxides as discussed in supporting information.

Electrochemical Oxygen Evolution Reaction performance (OER)

CFGNZ alloy was activated by cyclic voltammetry prior to electrochemical testing. The surface of HEA was activated by performing CV cycles in a potential range of 0.5 V to 1.6 V vs RHE at a scan rate of 20 mV/sec until stable cyclic voltammetry (CV) curves were obtained. After completion of the 150 cycles, a stable CV curve was obtained, as shown Fig. S4. Subsequently, there was the formation of the more metal oxides and hydroxides at the surface confirmed by the XPS spectra of O 1s Fig. 2(f). After electrochemical activation, the active sites were exposed due to OH⁻ insertion and participated in the catalytic process. The multi metal-based (oxy) hydroxides formed at the interface of alloy assist the fast electron transfer, benefit the exposure of catalytic active sites and also help to keep the morphological stability. The catalytic activity of CFGNZ (oxy) hydroxides (five element based system) exceed in comparison to ternary (oxy) hydroxides due to the charge redistribution and optimized absorbing ability to ^{*}OH ion which plays a crucial role in OER reaction.[22]

As shown in Fig. 3(a), LSV curves showed the catalytic activities of HEA electrocatalyst for OER, which showed overpotential of 370 mV at a current density of 10 mA cm⁻² and falls in the category of excellent electrocatalyst.[1] OER testing has also been performed for the RuO₂ state-of-the-art catalyst, which is found to be the least active in comparison to HEA. RuO₂ showed a very high overpotential of 430 mV at a current density of 10 mA cm⁻², which is 60 mV high as compared to HEA. In order to further elucidate the mechanism and kinetics behind the OER reaction, the Tafel slope has been calculated, as shown in Fig. 3(b). A smaller slope in the plot indicates the more rapid electron transfer at the electrode/electrolyte interface at the applied potentials, suggesting the better catalytic activity of the electrocatalyst[23]. Tafel slopes for HEA, RuO₂, after 3000, and 6000 CV cycles are 71 mV/dec, 108 mV/dec, 63 mV/sec and 63 mV/dec respectively. Tafel plot for HEA was the least as compared to state of the art catalyst RuO₂. Continuous CV cycling between 1.2 V to 1.5 V vs RHE in 1 M KOH was used to evaluate the durability, shown in Fig. S5. After 6000 cycles of CV cycles, LSV curves are shown in Fig. 3(a), showing no difference in the overpotential compared to the initial HEA. The Tafel plot was also calculated after 6000 cycles, as shown in

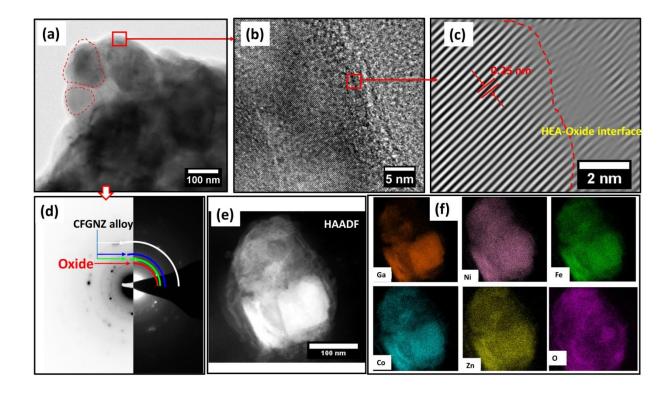


Fig. 3: (a) LSV curves (b) Tafel plot (c) Nyquist plot for RuO₂, HEA, after 3000 CV cycles and 6000 CV (d) Chronoamperometry studies for RuO₂ and HEA at operating voltage of 1.5 V vs RHE in 1 M KOH electrolyte (e) comparative analysis of overpotential @ 10 mA cm⁻² for metals, bimetallic, trimetallic and high entropy alloys obtained from literature table (supporting information) (f) overpotential at time t=0 hr, t=10 hr and after 3000 CV cycles and 6000 CV cycles in 1 M KOH electrolyte.

Fig. 3(b), revealing Tafel value of 63 mV/dec confirmed no change in the overall OER performance. These results demonstrated the superior durability of the HEA in the alkaline medium. In order to evaluate the charge transfer behaviour at the interface of catalyst/electrolyte, electrochemical impedance spectroscopy (EIS) was also performed.

Nyquist plot at the operating voltage of 1.5 V vs RHE was displayed in Fig. 3(c) for HEA, RuO₂, after 3000 and 6000 CV cycles, respectively. Randle's Equivalent circuit elements were fitted in NOVA software confirming the [R([CQ]R)] Randles' equivalent circuit, as shown in the inset of Fig. 3(c). CFGNZ forms a very small semicircle of Nyquist plot, suggesting the lower charge transfer resistance (R_{ct}) in comparison to RuO₂ and after durability testing. Whereas, semicircle in the Nyquist plot corresponds to the resistance at the CFGNZ alloy/electrolyte interface so called charge transfer resistance (R_{ct}), which was tabulated in Table S2. CFGNZ reported very less R_{ct} of 166.9 Ω in comparison to 400.2 Ω for state-of-the-art RuO₂ electrocatalyst. EIS data is in good agreement with the LSV curves as it fully supporting the OER performance and in detailed circuit fitting explained in supporting information. The stability of the HEA and RuO₂ electrocatalyst was evaluated by the Chronoamperometry testing at a potential of 1.5 V vs RHE for 10 hr, as shown in Fig. 3(d). After completing 10 hr of stability test, HEA has 80 % current retention and very little material degradation. However, in the case of RuO₂, only 30 % of material retained after completion of 10 hr with a maximum loss of the material up to initial 4 hr. The Chronoamperometry test showed tremendous stability of HEA with retained OER activity even after 10 hr. As shown in Fig. S6(a), there was almost negligible change in OER performance of HEA after 10 hr of stability test. The Nyquist plot is shown in Fig. S6(b) obtained at an operating voltage of 1.5 V after stability testing, confirmed very small change in the charge transfer resistance of HEA. Furthermore, TEM was also performed to find out the changes occurred in the material after 10 hr of long-term of Chronoamperometry test. The overpotential of high entropy alloy was compared with the other bimetallic and trimetallic alloys with the help of as reported literature as shown in Fig. 3(e), which confirmed the least overpotential of CFGNZ alloy. Overpotential calculation at current density of 10 mA cm⁻² after 10 hr of Chronoamperometry testing was checked as shown in Fig. 3(f), which suggests

the superior activity of catalyst with no appreciable change in OER performance. The sample was taken out after 10 hr of Chronoamperometry testing, and TEM was also performed. The nanoparticles were scratched from the electrode to do the post-reaction TEM analysis. At this stage, nanoparticles were not free as they were as prepared also having an oxide layer over the surface. Subsequently, the alloy nanoparticles were characterized using TEM, as shown in Fig. 4.

Fig. 4: CFGNZ alloy NPs after 10 h of Chronoamperometry testing (**a**) bright-field TEM image (**b**) HRTEM image of NP (**c**) FFT filtered image of b (**d**) selected area ring diffraction pattern (**e**) high angle annular dark (HAADF) field image of a nanoparticles (**f**) elemental mapping of the nanoparticles.

The high-resolution TEM image in Fig. 4 (b & c) confirmed the oxide formation as d-spacing increases, compared to the HRTEM image of the as-prepared CFGNZ alloy. In addition, the diffraction ring pattern of nanoparticles reveals the existence of nanocrystalline materials having layer oxide. However, it does not show well-distinguished rings for different metallic oxides. The elemental maps of the NPs reveal homogeneity along with the oxygen content, as

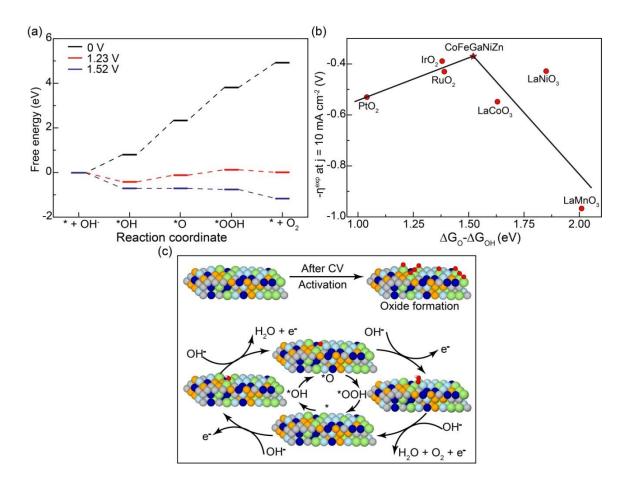
shown in Fig. 4(f). This was absent before Chronoamperometry test with electrolyte. Similar results were also observed in XPS, but the CPS measurements don't reveal the existence of elements in the as-prepared alloy, rather oxides.

THEORETICAL STUDIES

To gain mechanistic insights into the efficient OER reaction on the CFGNZ alloy, we also performed DFT calculations. Ni was chosen as the parent structure for generating the FCC-HEA structure with optimized lattice parameters are (a = b = c = 3.52 Å Fig. S1(a), which is in excellent agreement with the previous reports[24]. The (111) facet was selected for DFT calculations, as it shows the most prominent peak in the XRD pattern Fig. 1(b). The interlayer distance in the DFT-obtained HEA structure was found to be 2.10 Å, in good agreement with the experiments. Next, quantification of the catalytic activity (or overpotential) of OER on HEA surface was performed using the computational hydrogen electrode (CHE) model proposed by Nørskov *et al[25]*. It is determined by the adsorption energies of three intermediates (*OH, *O, and *OOH) involved in the reaction[26]:

$$\Delta E_{OH} = E(*OH) - [E^* + E(H_2O) - 0.5E(H_2)]$$
(5)

$$\Delta E_0 = E(*O) - [E^* + E(H_2O) - E(H_2)]$$
(6)


$$\Delta E_{OOH} = E(*OOH) - [E^* + 2E(H_2O) - 1.5E(H_2)]$$
(7)

where * represents the catalyst surface. These intermediate adsorption energies were then utilized for calculating free energies of adsorption (ΔG_{ads})^{·[27],[28]}:

$$\Delta G_{ads} = \Delta E_{ads} + \Delta ZPE - T\Delta S + \Delta G_U \quad (8)$$

where ΔZPE is the difference in zero-point energies of the reactants and products (Table S3) and Fig. S7, T ΔS is the difference in vibrational entropies Table S3, ΔG_U (= -eU; e is the number of electrons transferred) is the free energy corrections due to electrode potentials. The

value of T was taken to be 298 K. However, in the case of CFGNZ alloy, due to the combinatorial explosion of the possibilities of catalytically active sites, the prospective sites have to be selected rationally, e.g., based on d(p)-band center ($E_{d(p)BC}$) values[8].^[7]. Hence, the $E_{d(p)BC}$ for all the sites on the surface of the

Fig. 5: (a) Free energy diagram of OER on the CFGNZ alloy surface. Optimized structures of *OH, *O, and *OOH intermediates are also shown in the insets. Grey, green, cyan, orange, blue, red, and white spheres represent Ni, Ga, Zn, Fe, Co, O, and H atoms, respectively; (b) The OER volcano plot for various state-of-the-art catalysts, including the CFGNZ alloy shown against their descriptor (ΔG_0 - ΔG_{OH}) values. The experimental values of overpotentials were obtained from references [29-31], and the theoretical values have been obtained from the reference[32]. (c) Proposed mechanism of OER at the surface of CFGNZ alloy in alkaline medium (1M KOH; Gallium- yellow balls, Cobalt-blue balls, Zinc-orange balls, Iron- red balls, Nickel-green balls, Oxygen-grey balls)

CFGNZ alloy slab Fig. S6 (b) has been plotted in Fig. S7. It is evident that Ga, Fe, and Co sites have $E_{d(p)BC}$ closer to the Fermi level (E_F) compared to that of Ni and Zn sites. In

general, the sites with the $E_{d(p)BC}$ closer to the E_F are more chemically active than those with the $E_{d(p)BC}$ away from the $E_{F[33]}$. Therefore, we selected the Ga site, which has $E_{d(p)BC}$ closest to the E_F. Experimental (Chronoamperometry and CV activation) studies also suggest Ga to be the possible active sites for OER on the HEA surface. Hence, the profile for OER free energy on the HEA surface at the Ga site has been plotted in Fig. 5(a) using equations (5)-(8). The free energies at 0 and 1.23 V (standard oxidation potential for water) depict that the conversion of *OH to *O intermediate is the potential determining step (PDS). The free energy corresponding to this step (ΔG_{max}) is 1.52 eV at U = 0 V, and at a potential of 1.52 V, the free energy profile becomes downhill. Therefore, theoretical overpotential (η^{the}) for OER on the CFGNZ alloy at the Ga site is given by ($\Delta G_{max}/e - 1.23$) V = 0.29 V, which is closer to the experimental value (η^{exp}) of 0.37 V at a current density (j) of 10 mA cm⁻². To justify the high catalytic performance of CFGNZ alloy as compared with other state-of-the-art catalysts, we plotted their $-\eta^{exp}$ at j = 10 mA cm⁻² as a function of their $\Delta G_0 - \Delta G_{OH}$ values Fig. 5(b) since it is the widely-employed descriptor for OER at various catalyst surfaces[32]. The CFGNZ alloy lies at the top of the volcano plot, and its ΔG_0 - ΔG_{OH} value is also optimum (neither too strong nor too weak) compared to other catalysts such as rutile oxides (strong binding) and perovskites (weak binding). Hence, following the Sabatier's principle, the CFGNZ alloy acts as a highly efficient electrocatalyst for OER. Further, it is also expected from Fig. S7 that the alloys GaFe, GaCo, and GaFeCo may have comparable catalytic activity to that of the CFGNZ HEA for OER. However, the effect of Ni and Zn sites cannot be ignored in spite of their d-band centres being far from the Fermi level. It can be attributed to the lowering of the d-band centres of Ga, Fe, and Co sites due to the complex interplay of strain and ligand effects from all the elements present in the CFNGZ HEA. Removing the Ni and Zn atoms may not lead to optimal positioning of the d-band centres, hence it is not guaranteed that the GaFe, GaCo, and GaFeCo alloys will be active for OER.

Proposed OER mechanism for CFGNZ alloy

In an alkaline medium, the mechanism of OER is blurry as five different metal atoms are involved and finding out the active metal centre in this scenario is quite challenging. However, theoretical studies provide a useful tool to figure out the active centre in the present case. As discussed in the earlier section, both experimental and theoretical studies provide an insight for O-O bond formation in oxygen evolution reaction in alkaline medium. Before electrochemical test, the HEA surface was activated in order to form oxides as well as hydroxides on the top of the electrode surface, shown in Fig. 5(c) and is found responsible for the catalytic activities. As in the case of OER, the formation of oxygenated species originating from the aqueous electrolyte during activation are expected to play decisive role in determining the catalyst performance[23]. In this study, 1 M KOH was used as an aqueous electrolyte, which is rich in OH⁻ species coordinated to Ga and form intermediates GaOH^{*}, GaO* and GaOOH* and free energy calculations suggest that conversion of *OH to *O is the rate-determining step, confirmed by the theoretical studies. The OH- species make the bond with GaO*, and there is the coupling for the O-O bond formation, which releases in the form of O₂ leaving behind the active site of Ga free for next OH⁻ adsorption. In this way, HEA takes part in O₂ evolution with Ga as active centre at the interface of HEA/electrolyte. OER mechanism in the CFGNZ alloy surface will definitely help the other researchers to understand the role of the active metal centres, significantly contributing the catalytic activity.

CONCLUSIONS

In summary, we have proposed a cost-effective, easy scalable nanocrystalline HEA materials preparation recipe for OER study. The HEAs OER shows a reduced overpotential of 370 mV at the current density of 10 mA cm⁻², as well as the Tafel slope of 71 mV/ dec, respectively. It exhibits outstanding durability of up to 6000 cycles as well as 10 hr stability with no overall

change in the OER performance. The theoretical DFT study further establishes the efficacy of CFGNZ alloy for OER compared to other state-of-the-art catalysts based on optimum ΔG_{O-} ΔG_{OH} value. Besides, this study will strengthen the understanding of mechanism at the CFGNZ/electrolyte surface providing a new high performance high entropy OER electrocatalyst. This will further guide to design more efficient OER catalysts in near future. These findings support the view that the multicomponent high entropy alloy containing Co, Fe, Ga, Ni, and Zn elements is an excellent OER catalyst with the formation of metallic oxide as the active component with great significance towards the stability of CFGNZ alloy.

ASSOCIATED CONTENT

Supporting information: XPS spectra of initial CFGNZ alloy along with the oxygen content, after CV activation and after 10 h of Chronoamperometry and cyclic durability of CFGNZ alloy have been discussed using Fig. (S2, S3, S4, and S5). OER performance and Nyquist plot after 10 h of stability test Fig. S6. OER performance of CFGNZ alloy was also compared with the metals, bimetallic and trimetallic alloys in Table S1. EIS parameters were also mentioned in Table S2. For computational analysis, the Optimized geometric structure of CFGNZ alloy slab with different orientation view in Fig. S1 (a, b & c) and d(p)-band centre ($E_{d(p)BC}$) with each element details have been shown in Fig. S7. Also energetics for OER on the CFGNZ alloy was also mentioned in Table S3 respectively.

AUTHOR INFORMATION

Corresponding Authors

A. Halder: School of Basic Sciences, Advanced Materials Research Centre (AMRC), Indian Institute of Technology Mandi (H.P), Kamand, Mandi – 175005, INDIA; orcid.org/0000-0003-0399-9705 Email: aditi@iitmandi.ac.in

Krishanu Biswas: Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur-208016 INDIA; orcid.org/0000-0001-5382-9195; Email: kbiswas@iitk.ac.in

Abhishek K. Singh: Materials Research Centre, Indian Institute of Science, Bangalore-560012, INDIA; orcid.org/0000-0002-7631-6744; Email: abhishek@iisc.ac.in

C.S. Tiwary: Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur-382355, INDIA; orcid.org/0000-0001-9760-9768; Email: Chandra.tiwary@metal.iitkgp.ac.in

AUTHORS

Lalita Sharma: School of Basic Sciences, Advanced Materials Research Centre (AMRC), Indian Institute of Technology Mandi (H.P), Kamand, Mandi – 175005, INDIA; orcid.org/0000-0002-1924-3913

Nirmal Kumar Katiyar: School of Engineering, London South Bank University, 103 Borough Road, London, SE10 AA, UK; ; orcid.org/0000-0001-8795-7857

Arko Parui: Materials Research Centre, Indian Institute of Science, Bangalore-560012, INDIA

Rakes Das: Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur-382355, INDIA

Ritesh Kumar: Materials Research Centre, Indian Institute of Science, Bangalore-560012, INDIA; orcid.org/0000-0001-6345-6791

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors would like to thanks SERB-DST for financial support to carry out this research.

We would also like to thank the Imaging centre facilities at the Indian Institute of Technology

Kanpur for TEM imaging. We acknowledge Advanced Materials Research Centre (AMRC),

IIT Mandi to provide the sophisticated instrumentation facilities. A.P., R.K., and A.K.S.

acknowledge Materials Research Centre, Solid State and Structural Chemistry Unit, and Supercomputer Education and Research Centre for providing the computational facilities.

MHRD grant of the Indian Institute of Science. NKK acknowledges the Newton Fellowship

A.P., R.K., and A.K.S. also acknowledge the support from the Institute of Eminence (IoE)

award from the Royal Society UK (NIF\R1\191571).

REFERENCES

- Tahir, M.;Pan, L.;Idrees, F.;Zhang, X.;Wang, L.;Zou, J.-J.; Wang, Z. L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. *Nano Energy* 2017, 37, 136-157.
- [2] McCrory, C. C.;Jung, S.;Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. *J. Am. Chem. Soc.* **2013**, *135*, 16977-16987.
- [3] Lee, Y.;Suntivich, J.;May, K. J.;Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. *J. Phys. Chem. Lett.* **2012**, *3*, 399-404.
- [4] Burke, M. S.;Enman, L. J.;Batchellor, A. S.;Zou, S.; Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy) hydroxides: activity trends and design principles. *Chem. Mater.* **2015**, *27*, 7549-7558.
- [5] Kumar Katiyar, N.;Biswas, K.;Yeh, J.-W.;Sharma, S.; Sekhar Tiwary, C. A perspective on the catalysis using the high entropy alloys. *Nano Energy* **2021**, *88*, 106261.
- [6] Amiri, A.; Shahbazian-Yassar, R. Recent progress of high-entropy materials for energy storage and conversion. *J. Mater. Chem. A* **2021**, *9*, 782-823.
- [7] Nellaiappan, S.;Katiyar, N. K.;Kumar, R.;Parui, A.;Malviya, K. D.;Pradeep, K. G.;Singh, A. K.;Sharma, S.;Tiwary, C. S.; Biswas, K. High-Entropy Alloys as Catalysts for the CO₂ and CO Reduction Reactions: Experimental Realization. ACS Catal. 2020, 10, 3658-3663.
- [8] Katiyar, N. K.;Nellaiappan, S.;Kumar, R.;Malviya, K. D.;Pradeep, K. G.;Singh, A. K.;Sharma,
 S.;Tiwary, C. S.; Biswas, K. Formic acid and methanol electro-oxidation and counter hydrogen production using nano high entropy catalyst. *Mater. Today Eng.* 2020, *16*, 100393.
- [9] Kumar, N.;Tiwary, C. S.; Biswas, K. Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots. *J. Mater. Sci.* **2018**, *53*, 13411-13423.
- [10] Katiyar, N. K.;Biswas, K.;Tiwary, C. S.;Machado, L. D.; Gupta, R. K. Stabilization of a Highly Concentrated Colloidal Suspension of Pristine Metallic Nanoparticles (Supporting Information). *Langmuir* 2019, *35*, 2668-2673.
- [11] Katiyar, N. K.; Biswas, K.; Tiwary, C. S. Cryomilling as environmentally friendly synthesis route to prepare nanomaterials. *Int. Mater. Rev.* 2020, <u>https://doi.org/10.1080/09506608.2020.1825175</u>, 1-40.
- [12] Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. *Phys. Rev. B* **1993**, *47*, 558-561.
- [13] Perdew, J. P.;Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865-3868.
- [14] Zunger, A.; Wei, S.-H.; Ferreira, L.; Bernard, J. E. Special quasirandom structures. *Phys. Rev. Lett.* **1990**, *65*, 353.
- [15] Urs, K. M. B.;Katiyar, N. K.;Kumar, R.;Biswas, K.;Singh, A. K.;Tiwary, C. S.; Kamble, V. Multicomponent (Ag–Au–Cu–Pd–Pt) alloy nanoparticle-decorated p-type 2D-molybdenum disulfide (MoS₂) for enhanced hydrogen sensing. *Nanoscale* **2020**, *12*, 11830-11841.
- [16] Grosvenor, A. P.;Biesinger, M. C.;Smart, R. S. C.; McIntyre, N. S. New interpretations of XPS spectra of nickel metal and oxides. *Surf. Sci.* **2006**, *600*, 1771-1779.
- [17] Fujii, T.;De Groot, F.;Sawatzky, G.;Voogt, F.;Hibma, T.; Okada, K. In situ XPS analysis of various iron oxide films grown by NO 2-assisted molecular-beam epitaxy. *Phys. Rev. B* 1999, 59, 3195.
- [18] Tan, B. J.;Klabunde, K. J.; Sherwood, P. M. XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. J. Am. Chem. Soc. 1991, 113, 855-861.
- [19] Carli, R.; Bianchi, C. XPS analysis of gallium oxides. *Appl. Surf. Sci.* **1994**, *74*, 99-102.

- Petitmangin, A.;Gallas, B.;Hebert, C.;Perriere, J.;Binet, L.;Barboux, P.; Portier, X.
 Characterization of oxygen deficient gallium oxide films grown by PLD. *Appl. Surf. Sci.* 2013, 278, 153-157.
- [21] Du, X.;Zhao, H.;Lu, Y.;Zhang, Z.;Kulka, A.; Świerczek, K. Synthesis of core-shell-like ZnS/C nanocomposite as improved anode material for lithium ion batteries. *Electrochimica Acta* **2017**, *228*, 100-106.
- [22] Dai, W.;Lu, T.; Pan, Y. Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy. *J. Power Sources* **2019**, *430*, 104-111.
- [23] Katsounaros, I.;Cherevko, S.;Zeradjanin, A. R.; Mayrhofer, K. J. Oxygen electrochemistry as a cornerstone for sustainable energy conversion. *Angew. Chem. Int. Ed.* **2014**, *53*, 102-121.
- [24] Lide, D. R. CRC Handbook of Chemistry and Physics, Editor-in-Chief. CRC Press, 2004.
- [25] Nørskov, J. K.;Rossmeisl, J.;Logadottir, A.;Lindqvist, L.;Kitchin, J. R.;Bligaard, T.; Jónsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. *J. Phys. Chem. B* 2004, 108, 17886-17892.
- [26] Nandan, R.;Devi, H. R.;Kumar, R.;Singh, A. K.;Srivastava, C.; Nanda, K. K. Inner Sphere Electron Transfer Promotion on Homogeneously Dispersed Fe-Nx Centers for Energy-Efficient Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2020, 12, 36026-36039.
- [27] Kumar, R.;Das, D.; Singh, A. K. C2N/WS2 van der Waals type-II heterostructure as a promising water splitting photocatalyst. *J. Catal.* **2018**, *359*, 143-150.
- [28] Kumar, R.; Singh, A. K. Electronic Structure Based Intuitive Design Principle of Single-Atom Catalysts for Efficient Electrolytic Nitrogen Reduction. *ChemCatChem* **2020**, *12*, 5456-5464.
- [29] Bockris, J. O. M.; Otagawa, T. The Electrocatalysis of Oxygen Evolution on Perovskites. *J. Electrochem. Soc.* **1984**, *131*, 290-302.
- [30] Sun, W.;Song, Y.;Gong, X.-Q.;Cao, L.-m.; Yang, J. An efficiently tuned d-orbital occupation of IrO2 by doping with Cu for enhancing the oxygen evolution reaction activity. *Chemical Science* **2015**, *6*, 4993-4999.
- [31] Matsumoto, Y.; Sato, E. Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. *Mater. Chem. Phys.* **1986**, *14*, 397-426.
- [32] Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. *Science* 2017, 355, eaad4998.
- [33] Nørskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Density functional theory in surface chemistry and catalysis. *PNAS* **2011**, *108*, 937-943.