Formic acid and methanol electro-oxidation and counter hydrogen production using nano high entropy catalyst

Journal article


Kumar, N., Nellaiappan, S., Kumar, R., Malviya, K.D., Pradeep, K.G., Singh, A.K., Sharma, S., Tiwary, C.S. and Biswas, K. (2020). Formic acid and methanol electro-oxidation and counter hydrogen production using nano high entropy catalyst. Materials Today Energy. 16, p. 100393. https://doi.org//10.1016/j.mtener.2020.100393
AuthorsKumar, N., Nellaiappan, S., Kumar, R., Malviya, K.D., Pradeep, K.G., Singh, A.K., Sharma, S., Tiwary, C.S. and Biswas, K.
Abstract

Renewable harvesting of clean energy using the benefits of multi-metallic catalytic materials of high
entropy alloy (HEA, equimolar CueAgeAuePtePd) from formic acid with minimum energy input has
been achieved in the present investigation. The synergistic effect of pristine elements in the multimetallic
HEA drives the electro-oxidation reaction towards non-carbonaceous pathway. The atomistic
based simulations based on DFT rationalize the distinct lowering of the d-band center for the individual
atoms in the HEA as compared to the pristine counterparts. Further this catalytic activity of the HEA has
also been extended to methanol electro-oxidation to show the unique capability of the novel catalyst.
The nanostructured HEA, prepared using a combination of casting and cryomilling techniques can further
be utilized as the fuel cell anode in the direct formic acid/methanol fuel cells (DFFE).

Year2020
JournalMaterials Today Energy
Journal citation16, p. 100393
PublisherElsevier
ISSN2468-6069
Digital Object Identifier (DOI)https://doi.org//10.1016/j.mtener.2020.100393
Publication dates
Online07 Mar 2020
Print01 Jun 2020
Publication process dates
Accepted05 Feb 2020
Deposited24 Feb 2021
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/8w275

Download files


Accepted author manuscript
manuscript_Materials_E_Today.pdf
License: CC BY-NC-ND 4.0
File access level: Open

  • 12
    total views
  • 21
    total downloads
  • 5
    views this month
  • 10
    downloads this month

Export as

Related outputs

Nanomaterials based Biosensing: Methods and principle of detection
Kumar, N., Goel, G. and Goel, S. (2022). Nanomaterials based Biosensing: Methods and principle of detection. in: Joshi SN and Chandra P (ed.) Advanced Micro and Nano Manufacturing Technologies - Applications in Biochemical and Biomedical Engineering Springer Nature.
Electrooxidation of Hydrazine Utilizing High Entropy Alloys: Assisting Oxygen Evolution Reaction at the Thermodynamic Voltage
Kumar, N., Dhakar, S., Parui, A., Gakhad, P., Singh, A.K., Biswas, K., Tiwary, C.S. and Sharma, S. (2021). Electrooxidation of Hydrazine Utilizing High Entropy Alloys: Assisting Oxygen Evolution Reaction at the Thermodynamic Voltage. ACS Catalysis.
Role of Thermal Spray in Combating Climate Change
Viswanathan, V., Kumar, N., Goel, G., Matthews, A. and Goel, S. (2021). Role of Thermal Spray in Combating Climate Change. Emergent Materials.
Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER)
Sharma, L., Kumar, N., Parui, A., Das, R., Kumar, R., Tiwary, C.S., Singh, A.K., Halder, A. and Biswas, K. (2021). Low-cost high entropy alloy (HEA) for high-efficiency oxygen evolution reaction (OER). Nano Research. https://doi.org/10.1007/s12274-021-3802-4
A Perspective on the Catalysis Using the High Entropy Alloys
Kumar, N., Biswas, K., Yeah, J-W., Sharma, S. and Tiwary, C.S. (2021). A Perspective on the Catalysis Using the High Entropy Alloys. Nano Energy. https://doi.org/10.1016/j.nanoen.2021.106261
Large scale manufacturing route to metamaterial coatings using thermal spray techniques and their response to solar radiation
Faisal, N.H., Sellami, N., Venturi, F., Hussain, T., Mallick, T., Muhammad-Sukki, F., Bishop, A., Upadhyaya, H., Kumar, N. and Goel, S. (2021). Large scale manufacturing route to metamaterial coatings using thermal spray techniques and their response to solar radiation. Emergent Materials. https://doi.org/10.1007/s42247-021-00252-z
Nature inspired materials: Emerging trends and prospects
Kumar, N., Goel, G., Hawi, S. and Goel, S. (2021). Nature inspired materials: Emerging trends and prospects . NPG Asia Materials. 15 (56). https://doi.org/10.1038/s41427-021-00322-y
Emergence of machine learning in the development of high entropy alloy and their prospects in advanced engineering applications
Kumar, N., Goel, G. and Goel, S. (2021). Emergence of machine learning in the development of high entropy alloy and their prospects in advanced engineering applications. Emergent Materials. https://doi.org/10.1007/s42247-021-00249-8
Easy scalable avenue of anti-bacterial nanocomposites coating containing Ag NPs prepared by cryomilling
Katiyar, N.K. and Biswas, K. (2021). Easy scalable avenue of anti-bacterial nanocomposites coating containing Ag NPs prepared by cryomilling. Materials Today Communications. 26, p. 102020. https://doi.org/10.1016/j.mtcomm.2021.102020
Potential pathway for recycling of the paper mill sludge compost for brick making
Goel, G., Vasić, M.V., Kumar, N., Subramanian Kala, K., Pezo, M. and Dinakar, P. (2021). Potential pathway for recycling of the paper mill sludge compost for brick making. Construction and Building Materials. 278. https://doi.org/10.1016/j.conbuildmat.2021.122384
Cryomilling as environmentally friendly synthesis route to prepare nanomaterials
Kumar, N., Biswas, Krishanu and Tiwary, C. S. (2020). Cryomilling as environmentally friendly synthesis route to prepare nanomaterials. International Materials Reviews. 66 (7), pp. 493-532. https://doi.org/10.1080/09506608.2020.1825175
Multi-component (Ag–Au–Cu–Pd–Pt) alloy nanoparticle-decorated p-type 2D-molybdenum disulfide (MoS2) for enhanced hydrogen sensing
Urs, K.M.B., Katiyar, N.K., Kumar, R., Biswas, K., Singh, A.K., Tiwary, C.S. and Kamble, V. (2020). Multi-component (Ag–Au–Cu–Pd–Pt) alloy nanoparticle-decorated p-type 2D-molybdenum disulfide (MoS2) for enhanced hydrogen sensing. Nanoscale. 12 (22), pp. 11830-11841. https://doi.org/10.1039/d0nr02177f
High-Entropy Alloys as Catalysts for the CO2 and CO Reduction Reactions: Experimental Realization
Nellaiappan, S., Katiyar, N.K., Kumar, R., Parui, A., Malviya, K.D., Pradeep, K.G., Singh, A.K., Sharma, S., Tiwary, C.S. and Biswas, K. (2020). High-Entropy Alloys as Catalysts for the CO2 and CO Reduction Reactions: Experimental Realization. ACS Catalysis. 10 (6), pp. 3658-3663. https://doi.org/10.1021/acscatal.9b04302
Cryomilling: An environment friendly approach of preparation large quantity ultra refined pure aluminium nanoparticles
Kumar, N. and Biswas, K. (2019). Cryomilling: An environment friendly approach of preparation large quantity ultra refined pure aluminium nanoparticles. Journal of Materials Research and Technology. 8 (1), pp. 63-74. https://doi.org/10.1016/j.jmrt.2017.05.017
Stabilization of a Highly Concentrated Colloidal Suspension of Pristine Metallic Nanoparticles
Kumar, N., Biswas, K., Tiwary, C.S., Machado, L.D. and Gupta, R.K. (2019). Stabilization of a Highly Concentrated Colloidal Suspension of Pristine Metallic Nanoparticles. Langmuir. 35 (7), pp. 2668-2673. https://doi.org/10.1021/acs.langmuir.8b03401
The Effect of Configurational Entropy of Mixing on the Design and Development of Novel Materials
Biswas, K. and Kumar, N. (2019). The Effect of Configurational Entropy of Mixing on the Design and Development of Novel Materials. Proceedings of the Indian National Science Academy. 86 (3), pp. 1127-1134. https://doi.org/10.16943/ptinsa/2019/49674
Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots
Kumar, N., Tiwary, C. and Biswas, K. (2018). Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots. Journal of Materials Science. 53 (19), pp. 13411-13423. https://doi.org/10.1007/s10853-018-2485-z
Effect of Al Addition on the Microstructural Evolution of Equiatomic CoCrFeMnNi Alloy
Kumar, J., Kumar, N., Das, S., Gurao, N. and Biswas, K. (2018). Effect of Al Addition on the Microstructural Evolution of Equiatomic CoCrFeMnNi Alloy. Transactions of the Indian Institute of Metals. 71 (11), pp. 2749-2758. https://doi.org/10.1007/s12666-018-1443-4
Green synthesis of Ag nanoparticles in large quantity by cryomilling
Kumar, N., Biswas, K. and Gupta, R. K. (2016). Green synthesis of Ag nanoparticles in large quantity by cryomilling. RSC Advances. 6 (112), pp. 111380-111388. https://doi.org/10.1039/c6ra23120a