A Novel Optimal Mapping Algorithm With Less Computational Complexity for Virtual Network Embedding

Journal article


Cao, H, Zhu, Y, Zheng, G and Yang, L (2018). A Novel Optimal Mapping Algorithm With Less Computational Complexity for Virtual Network Embedding. IEEE Transactions on Network and Service Management. 15 (1), pp. 356-371.
AuthorsCao, H, Zhu, Y, Zheng, G and Yang, L
Abstract

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Network Virtualization (NV) is widely accepted as
one enabling technology for future network, which enables
multiple Virtual Networks (VNs) with different paradigms and
protocols to coexist on the shared Substrate Network (SN). One key challenge in network virtualization is Virtual Network Embedding (VNE), which maps a virtual network onto the shared SN. Since VNE is NP-hard, existing efforts mainly focus on proposing heuristic algorithms that try to achieve feasible VN embedding in reasonable time, consequently the resulted embedding is not optimal. To tackle this difficulty, we propose a candidate assisted (CAN-A) optimal VNE algorithm with lower computational complexity. The key idea of the CAN-A algorithm lies in constructing the candidate substrate node subset and the candidate substrate path subset before embedding. This reduces the mapping execution time substantially without performance loss. In the following embedding, four types of node and link constraints are considered in the CAN-A algorithm, making it more applicable to realistic networks. Simulation results show that the execution time of CAN-A is hugely cut down compared with pure VNE-MIP algorithm. CAN-A also outperforms the typical heuristic algorithms in terms of other performance indices, such as the average virtual network request (VNR) acceptance ratio and the average virtual link propagation delay.

Year2018
JournalIEEE Transactions on Network and Service Management
Journal citation15 (1), pp. 356-371
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
ISSN1932-4537
Digital Object Identifier (DOI)doi:10.1109/tnsm.2017.2778106
Publication dates
PrintMar 2018
Online28 Nov 2017
Publication process dates
Accepted01 Nov 2017
Deposited25 Jun 2020
Accepted author manuscript
License
CC BY 4.0
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/89584

Download files

  • 7
    total views
  • 5
    total downloads
  • 3
    views this month
  • 1
    downloads this month

Export as

Related outputs

Programmable Metasurface Based Multicast Systems: Design and Analysis
Zhu, Y (2020). Programmable Metasurface Based Multicast Systems: Design and Analysis. IEEE Journal on Selected Areas in Communications.
Stochastic Geometry Analysis of Large Intelligent Surface-Assisted Millimeter Wave Networks
Zhu, Y (2020). Stochastic Geometry Analysis of Large Intelligent Surface-Assisted Millimeter Wave Networks. IEEE Journal on Selected Areas in Communications.
Spectrum and Energy Efficiency in Dynamic UAV-Powered Millimeter Wave Networks
Zhu, Y and Tasos, D (2020). Spectrum and Energy Efficiency in Dynamic UAV-Powered Millimeter Wave Networks. IEEE Communications Letters.
Incomplete Information based Collaborative Computing in Emergency Communication Networks
Wang, Q, Zhu, Y and Wang, X (2020). Incomplete Information based Collaborative Computing in Emergency Communication Networks. IEEE Communications Letters.
Achievable Rate and Capacity Analysis for Ambient Backscatter Communications
Qian, J, Zhu, Y, He, C, Gao, F and Jin, S (2019). Achievable Rate and Capacity Analysis for Ambient Backscatter Communications. IEEE Transactions on Communications. 67 (9), pp. 6299-6310.
On the Uplink Achievable Rate of Massive MIMO System with Low-Resolution ADC and RF Impairments
Xu, L, Lu, X, Jin, S, Gao, F and Zhu, Y (2019). On the Uplink Achievable Rate of Massive MIMO System with Low-Resolution ADC and RF Impairments. IEEE Communications Letters. 23 (3), pp. 502-505.
Deep Learning Empowered Task Offloading for Mobile Edge Computing in Urban Informatics
Zhang, K, Zhu, Y, Leng, S, He, Y, Maharjan, S and Zhang, Y (2019). Deep Learning Empowered Task Offloading for Mobile Edge Computing in Urban Informatics. IEEE Internet of Things Journal. 6 (5), pp. 7635-7647.
A Deep Learning Framework for Optimization of MISO Downlink Beamforming
Xia, W, Zheng, G, Zhu, Y, Zhang, J, Wang, J and Petropulu, AP (2019). A Deep Learning Framework for Optimization of MISO Downlink Beamforming. IEEE Transactions on Communications. 68 (3), pp. 1866 - 1880.
Secrecy Rate Analysis of UAV-Enabled mmWave Networks Using Matérn Hardcore Point Processes
Zhu, Y, Zheng, G and Fitch, M (2018). Secrecy Rate Analysis of UAV-Enabled mmWave Networks Using Matérn Hardcore Point Processes. IEEE Journal on Selected Areas in Communications. 36 (7), pp. 1397-1409.
Content Placement in Cache-Enabled Sub-6 GHz and Millimeter-Wave Multi-Antenna Dense Small Cell Networks
Zhu, Y., Zheng, G., Wang, L., Wong, K-K. and Zhao, L. (2018). Content Placement in Cache-Enabled Sub-6 GHz and Millimeter-Wave Multi-Antenna Dense Small Cell Networks. IEEE Transactions on Wireless Communications. 17 (5), pp. 2843-2856.
Performance Analysis of Cache-Enabled Millimeter Wave Small Cell Networks
Zhu, Y., Zheng, G., Wong, K-K., Jin, S. and Lambotharan, S. (2018). Performance Analysis of Cache-Enabled Millimeter Wave Small Cell Networks. IEEE Transactions on Vehicular Technology. 67 (7), pp. 6695-6699.
A Efficient Mapping Algorithm With Novel Node-Ranking Approach for Embedding Virtual Networks
Cao, H, Zhu, Y, Yang, L and Zheng, G (2017). A Efficient Mapping Algorithm With Novel Node-Ranking Approach for Embedding Virtual Networks. IEEE Access. 5, pp. 22054-22066.
Secure Communications in Millimeter Wave Ad Hoc Networks
Zhu, Yongxu, Wang, Lifeng, Wong, Kai-Kit and Heath, Robert W (2017). Secure Communications in Millimeter Wave Ad Hoc Networks. IEEE Transactions on Wireless Communications. 16 (5), pp. 3205-3217.
Wireless Power Transfer in Massive MIMO-Aided HetNets With User Association
Zhu, Y., Wang, L., Wong, K-K., Jin, S. and Zheng, Z. (2016). Wireless Power Transfer in Massive MIMO-Aided HetNets With User Association. IEEE Transactions on Communications. 64 (10), pp. 4181-4195.
Geometric Power Control for Time-Switching Energy-Harvesting Two-User Interference Channel
Zhu, Yongxu, Wong, Kai-Kit, Zhang, Yangyang and Masouros, Christos (2016). Geometric Power Control for Time-Switching Energy-Harvesting Two-User Interference Channel. IEEE Transactions on Vehicular Technology. 65 (12), pp. 9759-9772.