Secrecy Rate Analysis of UAV-Enabled mmWave Networks Using Matérn Hardcore Point Processes

Journal article


Zhu, Y, Zheng, G and Fitch, M (2018). Secrecy Rate Analysis of UAV-Enabled mmWave Networks Using Matérn Hardcore Point Processes. IEEE Journal on Selected Areas in Communications. 36 (7), pp. 1397-1409. https://doi.org/10.1109/jsac.2018.2825158
AuthorsZhu, Y, Zheng, G and Fitch, M
Abstract

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Communications aided by low-altitude unmanned aerial vehicles (UAVs) have emerged as an effective solution to provide large coverage and dynamic capacity for both military and civilian applications, especially in unexpected scenarios. However, because of their broad coverage, UAV communications are prone to passive eavesdropping attacks. This paper analyzes the secrecy performance of UAVs networks at the millimeter wave band and takes into account unique features of air-to-ground channels and practical constraints of UAV deployment. To be specific, it explores the 3-D antenna gain in the air-to-ground links and uses the Matérn hardcore point process to guarantee the safety distance between the randomly deployed UAV base stations. In addition, we propose the transmit jamming strategy to improve the secrecy performance in which part of UAVs send jamming signals to confound the eavesdroppers

Year2018
JournalIEEE Journal on Selected Areas in Communications
Journal citation36 (7), pp. 1397-1409
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
ISSN0733-8716
Digital Object Identifier (DOI)https://doi.org/10.1109/jsac.2018.2825158
Publication dates
PrintJul 2018
Publication process dates
Accepted01 Feb 2018
Deposited25 Jun 2020
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/8958v

Download files

  • 3
    total views
  • 4
    total downloads
  • 0
    views this month
  • 1
    downloads this month

Export as

Related outputs

Performance Analysis of Hybrid UAV Networks for Probabilistic Content Caching
Zhu, Y. (2020). Performance Analysis of Hybrid UAV Networks for Probabilistic Content Caching. IEEE Systems Journal. https://doi.org/10.1109/JSYST.2020.3013786
Large System Analysis of Downlink MISO-NOMA System via Regularized Zero-Forcing Precoding with Imperfect CSIT
Zhang, J., Zhu, Y., Ma, S., Li, X. and Wong, K.K. (2020). Large System Analysis of Downlink MISO-NOMA System via Regularized Zero-Forcing Precoding with Imperfect CSIT. IEEE Communications Letters. https://doi.org/10.1109/lcomm.2020.3010422
Programmable Metasurface Based Multicast Systems: Design and Analysis
Zhu, Y (2020). Programmable Metasurface Based Multicast Systems: Design and Analysis. IEEE Journal on Selected Areas in Communications. https://doi.org/10.1109/JSAC.2020.3000809
Stochastic Geometry Analysis of Large Intelligent Surface-Assisted Millimeter Wave Networks
Zhu, Y (2020). Stochastic Geometry Analysis of Large Intelligent Surface-Assisted Millimeter Wave Networks. IEEE Journal on Selected Areas in Communications. https://doi.org/10.1109/JSAC.2020.3000806
Spectrum and Energy Efficiency in Dynamic UAV-Powered Millimeter Wave Networks
Zhu, Y and Tasos, D (2020). Spectrum and Energy Efficiency in Dynamic UAV-Powered Millimeter Wave Networks. IEEE Communications Letters. https://doi.org/10.1109/LCOMM.2020.3001357
Incomplete Information based Collaborative Computing in Emergency Communication Networks
Wang, Q, Zhu, Y and Wang, X (2020). Incomplete Information based Collaborative Computing in Emergency Communication Networks. IEEE Communications Letters. https://doi.org/10.1109/LCOMM.2020.2995501
Achievable Rate and Capacity Analysis for Ambient Backscatter Communications
Qian, J, Zhu, Y, He, C, Gao, F and Jin, S (2019). Achievable Rate and Capacity Analysis for Ambient Backscatter Communications. IEEE Transactions on Communications. 67 (9), pp. 6299-6310. https://doi.org/10.1109/tcomm.2019.2918525
On the Uplink Achievable Rate of Massive MIMO System with Low-Resolution ADC and RF Impairments
Xu, L, Lu, X, Jin, S, Gao, F and Zhu, Y (2019). On the Uplink Achievable Rate of Massive MIMO System with Low-Resolution ADC and RF Impairments. IEEE Communications Letters. 23 (3), pp. 502-505. https://doi.org/10.1109/lcomm.2019.2895823
Deep Learning Empowered Task Offloading for Mobile Edge Computing in Urban Informatics
Zhang, K, Zhu, Y, Leng, S, He, Y, Maharjan, S and Zhang, Y (2019). Deep Learning Empowered Task Offloading for Mobile Edge Computing in Urban Informatics. IEEE Internet of Things Journal. 6 (5), pp. 7635-7647. https://doi.org/10.1109/jiot.2019.2903191
A Deep Learning Framework for Optimization of MISO Downlink Beamforming
Xia, W, Zheng, G, Zhu, Y, Zhang, J, Wang, J and Petropulu, AP (2019). A Deep Learning Framework for Optimization of MISO Downlink Beamforming. IEEE Transactions on Communications. 68 (3), pp. 1866 - 1880. https://doi.org/10.1109/TCOMM.2019.2960361
Content Placement in Cache-Enabled Sub-6 GHz and Millimeter-Wave Multi-Antenna Dense Small Cell Networks
Zhu, Y., Zheng, G., Wang, L., Wong, K-K. and Zhao, L. (2018). Content Placement in Cache-Enabled Sub-6 GHz and Millimeter-Wave Multi-Antenna Dense Small Cell Networks. IEEE Transactions on Wireless Communications. 17 (5), pp. 2843-2856. https://doi.org/10.1109/twc.2018.2794368
A Novel Optimal Mapping Algorithm With Less Computational Complexity for Virtual Network Embedding
Cao, H, Zhu, Y, Zheng, G and Yang, L (2018). A Novel Optimal Mapping Algorithm With Less Computational Complexity for Virtual Network Embedding. IEEE Transactions on Network and Service Management. 15 (1), pp. 356-371. https://doi.org/10.1109/tnsm.2017.2778106
Performance Analysis of Cache-Enabled Millimeter Wave Small Cell Networks
Zhu, Y., Zheng, G., Wong, K-K., Jin, S. and Lambotharan, S. (2018). Performance Analysis of Cache-Enabled Millimeter Wave Small Cell Networks. IEEE Transactions on Vehicular Technology. 67 (7), pp. 6695-6699. https://doi.org/10.1109/tvt.2018.2797047
A Efficient Mapping Algorithm With Novel Node-Ranking Approach for Embedding Virtual Networks
Cao, H, Zhu, Y, Yang, L and Zheng, G (2017). A Efficient Mapping Algorithm With Novel Node-Ranking Approach for Embedding Virtual Networks. IEEE Access. 5, pp. 22054-22066. https://doi.org/10.1109/access.2017.2761840
Secure Communications in Millimeter Wave Ad Hoc Networks
Zhu, Yongxu, Wang, Lifeng, Wong, Kai-Kit and Heath, Robert W (2017). Secure Communications in Millimeter Wave Ad Hoc Networks. IEEE Transactions on Wireless Communications. 16 (5), pp. 3205-3217. https://doi.org/10.1109/twc.2017.2676087
Wireless Power Transfer in Massive MIMO-Aided HetNets With User Association
Zhu, Y., Wang, L., Wong, K-K., Jin, S. and Zheng, Z. (2016). Wireless Power Transfer in Massive MIMO-Aided HetNets With User Association. IEEE Transactions on Communications. 64 (10), pp. 4181-4195. https://doi.org/10.1109/tcomm.2016.2594794
Geometric Power Control for Time-Switching Energy-Harvesting Two-User Interference Channel
Zhu, Yongxu, Wong, Kai-Kit, Zhang, Yangyang and Masouros, Christos (2016). Geometric Power Control for Time-Switching Energy-Harvesting Two-User Interference Channel. IEEE Transactions on Vehicular Technology. 65 (12), pp. 9759-9772. https://doi.org/10.1109/tvt.2016.2520565