A Deep Learning Framework for Optimization of MISO Downlink Beamforming

Journal article


Xia, W, Zheng, G, Zhu, Y, Zhang, J, Wang, J and Petropulu, AP (2019). A Deep Learning Framework for Optimization of MISO Downlink Beamforming. IEEE Transactions on Communications. 68 (3), pp. 1866 - 1880. https://doi.org/10.1109/TCOMM.2019.2960361
AuthorsXia, W, Zheng, G, Zhu, Y, Zhang, J, Wang, J and Petropulu, AP
Abstract

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE Beamforming is an effective means to improve the quality of the received signals in multiuser multiple-input-singleoutput (MISO) systems. Traditionally, finding the optimal beamforming solution relies on iterative algorithms, which introduces high computational delay and is thus not suitable for realtime implementation. In this paper, we propose a deep learning framework for the optimization of downlink beamforming. In particular, the solution is obtained based on convolutional neural networks and exploitation of expert knowledge, such as the uplink-downlink duality and the known structure of optimal solutions. Using this framework, we construct three beamforming neural networks (BNNs) for three typical optimization problems, i.e., the signal-to-interference-plus-noise ratio (SINR) balancing problem, the power minimization problem, and the sum rate maximization problem. For the former two problems the BNNs adopt the supervised learning approach, while for the sum rate maximization problem a hybrid method of supervised and unsupervised learning is employed. Simulation results show that the BNNs can achieve near-optimal solutions to the SINR balancing and power minimization problems, and a performance close to that of the weighted minimum mean squared error algorithm for the sum rate maximization problem, while in all cases enjoy significantly reduced computational complexity. In summary, this work paves the way for fast realization of optimal beamforming in multiuser MISO systems.

KeywordsDeep learning; beamforming; MISO; beamforming neural network
Year2019
JournalIEEE Transactions on Communications
Journal citation68 (3), pp. 1866 - 1880
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
ISSN0090-6778
Digital Object Identifier (DOI)https://doi.org/10.1109/TCOMM.2019.2960361
Publication dates
Print17 Dec 2019
Publication process dates
Accepted11 Dec 2019
Deposited25 Jun 2020
Accepted author manuscript
License
File Access Level
Open
Page range1-1
Permalink -

https://openresearch.lsbu.ac.uk/item/8957x

Download files


Accepted author manuscript
  • 155
    total views
  • 228
    total downloads
  • 6
    views this month
  • 5
    downloads this month

Export as

Related outputs

The role of NTN in 6G
Dagiuklas, A. and Zhu, Y. (2022). The role of NTN in 6G. https://futurenetworks.ieee.org. Virtual 19 - 21 Jul 2022 Institute of Electrical and Electronics Engineers (IEEE).
Multi-Agent Collaborative Learning for UAV Enabled Wireless Networks
Xia, W., Zhu, Y., De Simone, L., Dagiuklas, A., Wong, K-K. and Zhen, G. (2022). Multi-Agent Collaborative Learning for UAV Enabled Wireless Networks. IEEE Journal on Selected Areas in Communications. pp. 2630 - 2642. https://doi.org/10.1109/JSAC.2022.3191329
Resource Management for Intelligent Reflecting Surface Assisted THz-MIMO Network
Ren, L., Zhang, H., Zhu, Y. and Long, K. (2021). Resource Management for Intelligent Reflecting Surface Assisted THz-MIMO Network. 2021 IEEE Global Communications Conference (GLOBECOM). Madrid, Spain 07 - 11 Dec 2021 Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/globecom46510.2021.9685295
User Selection in Reconfigurable Intelligent Surface Assisted Communication Systems
Gan, Xu, Zhong, C., Zhu, Y. and Zhong, Z. (2021). User Selection in Reconfigurable Intelligent Surface Assisted Communication Systems. IEEE Communications Letters. 25 (4), pp. 1353-1357. https://doi.org/10.1109/lcomm.2020.3048782
Performance Analysis of Hybrid UAV Networks for Probabilistic Content Caching
Zhu, Y. (2020). Performance Analysis of Hybrid UAV Networks for Probabilistic Content Caching. IEEE Systems Journal. https://doi.org/10.1109/JSYST.2020.3013786
Large System Analysis of Downlink MISO-NOMA System via Regularized Zero-Forcing Precoding with Imperfect CSIT
Zhang, J., Zhu, Y., Ma, S., Li, X. and Wong, K.K. (2020). Large System Analysis of Downlink MISO-NOMA System via Regularized Zero-Forcing Precoding with Imperfect CSIT. IEEE Communications Letters. 24 (11), pp. 2454-2458. https://doi.org/10.1109/lcomm.2020.3010422
Programmable Metasurface Based Multicast Systems: Design and Analysis
Zhu, Y (2020). Programmable Metasurface Based Multicast Systems: Design and Analysis. IEEE Journal on Selected Areas in Communications. https://doi.org/10.1109/JSAC.2020.3000809
Stochastic Geometry Analysis of Large Intelligent Surface-Assisted Millimeter Wave Networks
Zhu, Y (2020). Stochastic Geometry Analysis of Large Intelligent Surface-Assisted Millimeter Wave Networks. IEEE Journal on Selected Areas in Communications. https://doi.org/10.1109/JSAC.2020.3000806
Spectrum and Energy Efficiency in Dynamic UAV-Powered Millimeter Wave Networks
Zhu, Y and Tasos, D (2020). Spectrum and Energy Efficiency in Dynamic UAV-Powered Millimeter Wave Networks. IEEE Communications Letters. https://doi.org/10.1109/LCOMM.2020.3001357
Incomplete Information based Collaborative Computing in Emergency Communication Networks
Wang, Q, Zhu, Y and Wang, X (2020). Incomplete Information based Collaborative Computing in Emergency Communication Networks. IEEE Communications Letters. https://doi.org/10.1109/LCOMM.2020.2995501
Blockchain-Empowered Decentralized Storage in Air-to-Ground Industrial Networks
Zhu, Y., Zheng, G. and Wong, K-K. (2019). Blockchain-Empowered Decentralized Storage in Air-to-Ground Industrial Networks. IEEE Transactions on Industrial Informatics. 15 (6), pp. 3593-3601. https://doi.org/10.1109/tii.2019.2903559
Achievable Rate and Capacity Analysis for Ambient Backscatter Communications
Qian, J, Zhu, Y, He, C, Gao, F and Jin, S (2019). Achievable Rate and Capacity Analysis for Ambient Backscatter Communications. IEEE Transactions on Communications. 67 (9), pp. 6299-6310. https://doi.org/10.1109/tcomm.2019.2918525
On the Uplink Achievable Rate of Massive MIMO System with Low-Resolution ADC and RF Impairments
Xu, L, Lu, X, Jin, S, Gao, F and Zhu, Y (2019). On the Uplink Achievable Rate of Massive MIMO System with Low-Resolution ADC and RF Impairments. IEEE Communications Letters. 23 (3), pp. 502-505. https://doi.org/10.1109/lcomm.2019.2895823
Deep Learning Empowered Task Offloading for Mobile Edge Computing in Urban Informatics
Zhang, K, Zhu, Y, Leng, S, He, Y, Maharjan, S and Zhang, Y (2019). Deep Learning Empowered Task Offloading for Mobile Edge Computing in Urban Informatics. IEEE Internet of Things Journal. 6 (5), pp. 7635-7647. https://doi.org/10.1109/jiot.2019.2903191
Secrecy Rate Analysis of UAV-Enabled mmWave Networks Using Matérn Hardcore Point Processes
Zhu, Y, Zheng, G and Fitch, M (2018). Secrecy Rate Analysis of UAV-Enabled mmWave Networks Using Matérn Hardcore Point Processes. IEEE Journal on Selected Areas in Communications. 36 (7), pp. 1397-1409. https://doi.org/10.1109/jsac.2018.2825158
Content Placement in Cache-Enabled Sub-6 GHz and Millimeter-Wave Multi-Antenna Dense Small Cell Networks
Zhu, Y., Zheng, G., Wang, L., Wong, K-K. and Zhao, L. (2018). Content Placement in Cache-Enabled Sub-6 GHz and Millimeter-Wave Multi-Antenna Dense Small Cell Networks. IEEE Transactions on Wireless Communications. 17 (5), pp. 2843-2856. https://doi.org/10.1109/twc.2018.2794368
A Novel Optimal Mapping Algorithm With Less Computational Complexity for Virtual Network Embedding
Cao, H, Zhu, Y, Zheng, G and Yang, L (2018). A Novel Optimal Mapping Algorithm With Less Computational Complexity for Virtual Network Embedding. IEEE Transactions on Network and Service Management. 15 (1), pp. 356-371. https://doi.org/10.1109/tnsm.2017.2778106
Performance Analysis of Cache-Enabled Millimeter Wave Small Cell Networks
Zhu, Y., Zheng, G., Wong, K-K., Jin, S. and Lambotharan, S. (2018). Performance Analysis of Cache-Enabled Millimeter Wave Small Cell Networks. IEEE Transactions on Vehicular Technology. 67 (7), pp. 6695-6699. https://doi.org/10.1109/tvt.2018.2797047
A Efficient Mapping Algorithm With Novel Node-Ranking Approach for Embedding Virtual Networks
Cao, H, Zhu, Y, Yang, L and Zheng, G (2017). A Efficient Mapping Algorithm With Novel Node-Ranking Approach for Embedding Virtual Networks. IEEE Access. 5, pp. 22054-22066. https://doi.org/10.1109/access.2017.2761840
Secure Communications in Millimeter Wave Ad Hoc Networks
Zhu, Y., Wang, L., Wong, K-K. and Heath, R.W. (2017). Secure Communications in Millimeter Wave Ad Hoc Networks. IEEE Transactions on Wireless Communications. 16 (5), pp. 3205-3217. https://doi.org/10.1109/twc.2017.2676087
Stress concentrations in nanoscale defective graphene
Wang, C, Wang, J and Barber, AH (2017). Stress concentrations in nanoscale defective graphene. AIP Advances. 7 (11), pp. 115001-115001. https://doi.org/10.1063/1.4996387
Wireless Power Transfer in Massive MIMO-Aided HetNets With User Association
Zhu, Y., Wang, L., Wong, K-K., Jin, S. and Zheng, Z. (2016). Wireless Power Transfer in Massive MIMO-Aided HetNets With User Association. IEEE Transactions on Communications. 64 (10), pp. 4181-4195. https://doi.org/10.1109/tcomm.2016.2594794
Geometric Power Control for Time-Switching Energy-Harvesting Two-User Interference Channel
Zhu, Yongxu, Wong, Kai-Kit, Zhang, Yangyang and Masouros, Christos (2016). Geometric Power Control for Time-Switching Energy-Harvesting Two-User Interference Channel. IEEE Transactions on Vehicular Technology. 65 (12), pp. 9759-9772. https://doi.org/10.1109/tvt.2016.2520565
The effect of amidation on the behaviour of antimicrobial peptides
Mura, M, Wang, J, Zhou, Y, Pinna, M, Zvelindovsky, A, Dennison, SR and Phoenix, DA (2016). The effect of amidation on the behaviour of antimicrobial peptides. European Biophysics Journal. 45 (3), pp. 195-207. https://doi.org/10.1007/s00249-015-1094-x