

Abstract—Network Virtualization (NV) is widely accepted as

one enabling technology for future network, which enables
multiple Virtual Networks (VNs) with different paradigms and
protocols to coexist on the shared Substrate Network (SN). One
key challenge in network virtualization is Virtual Network
Embedding (VNE), which maps a virtual network onto the shared
SN. Since VNE is NP-hard, existing efforts mainly focus on
proposing heuristic algorithms that try to achieve feasible VN
embedding in reasonable time, consequently the resulted
embedding is not optimal. To tackle this difficulty, we propose a
candidate assisted (CAN-A) optimal VNE algorithm with lower
computational complexity. The key idea of the CAN-A algorithm
lies in constructing the candidate substrate node subset and the
candidate substrate path subset before embedding. This reduces
the mapping execution time substantially without performance
loss. In the following embedding, four types of node and link
constraints are considered in the CAN-A algorithm, making it
more applicable to realistic networks. Simulation results show
that the execution time of CAN-A is hugely cut down compared
with pure VNE-MIP algorithm. CAN-A also outperforms the
typical heuristic algorithms in terms of other performance indices,
such as the average virtual network request (VNR) acceptance
ratio and the average virtual link propagation delay.

Index Terms—Network virtualization, virtual network
embedding, NP-hard, heuristic algorithm, execution time,
candidate subset, virtual network request acceptance ratio,
virtual link propagation delay.

I. INTRODUCTION

ECENTLY, network virtualization has been recognized as
one of the key technologies for the future network [1]-[5].

Network virtualization is widely accepted as the right candidate
to overcome the ossification of current Internet to fundamental
changes.

Though a great interest in network virtualization has been
stimulated, several challenges still exist and prevent network
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virtualization from being implemented in real networking
environment [4]. One main challenge is how to effectively and
efficiently map multiple virtual networks (VNs), with
individual virtual node and link requests, onto the shared
substrate networks with limited node and link resources. This
mapping challenge is known as virtual network embedding
(VNE). Since VNE requires a simultaneous optimal assignment
of virtual nodes and links of each VN, it is complex in
computation and known as a NP-hard problem [8]. Multiple
VNE algorithms have been proposed in the literature [9]-[25].
However, for simplifying the VNE, these algorithms either
assume that the shared SN supports the path splitting [26][27],
or conduct the node and link embedding in two separate stages.
Consequently, the mapping results of these algorithms are not
optimal.

This paper presents an optimal mapping algorithm with huge
reduction of the algorithm execution time for virtual network
embedding. The proposed algorithm is named as CAN-A
(Candidate Assisted). Compared with existing non-optimal
heuristic algorithms, CAN-A algorithm insures the optimal
mapping solution for any given virtual network request. At the
same time, the computational complexity of CAN-A is much
lower compared with previous optimal VNE algorithms. The
key idea of CAN-A algorithm lies in constructing the candidate
substrate node subset and the candidate substrate path subset
before conducting the integer linear programming based
mapping. In CAN-A algorithm, four types of node and link
constraints are considered, which are deduced from realistic
network attributes, and make CAN-A applicable to real VN
operation. Those constraints are node capacity, node location,
link bandwidth, and link propagation delay [28][29][30].
Virtual node location and virtual link propagation delay are not
considered as constraints in previous VNE algorithms.
Extensive simulation results show that the execution time of
CAN-A is hugely cut down, compared with the optimal
VNE-MIP algorithm [14]. In addition, our CAN-A algorithm
outperforms the selected typical heuristic algorithms in terms
of other performance metrics such as average VNR acceptance
ratio and average virtual link propagation delay.

Main contributions of this paper are summarized as follows:
1) A novel VNE algorithm CAN-A is proposed, which is

optimal and less computationally complex. The reduction
of computational complexity is achieved by constructing
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two substrate candidate subsets, one for substrate nodes,
the other one for substrate paths. The volume of each
subset is much smaller than the corresponding full set.
Afterwards, integer linear programming based approach is
applied to calculate the optimal mapping within the
reduced subsets.

2) The virtual node locations and the virtual link propagation
delays are formulated as constraints in the CAN-A
algorithm, which are not considered as constraints in
previous papers. With the increase of delay sensitive
services [28][29] on the network, strict and guaranteed
transmission delay is needed for this kind of new services.
We formulate the link propagation delay as a constraint
into CAN-A algorithm, so as to the mapped virtual
network provides delay guaranteed services to meet future
service requirements. Location constraint is a natural
attribute of network node. Location constraint in VNE
algorithm makes VNE applicable to engineering networks.

3) Four sub-algorithms of CAN-A are proposed and
evaluated in our paper. Each sub-algorithm adopts an
objective function to optimize specific performance index.
Four objectives are: total substrate cost function CF, total
virtual link propagation delay function LDF, substrate cost
and load balancing function CLBF, substrate cost and
virtual link propagation delay function CLDF,
respectively.

4) Extensive simulations are conducted in our paper. The
computational complexity of CAN-A is compared with the
pure mixed integer programming (MIP) algorithm, which
is widely accepted as the optimal VNE algorithm. The
simulation results indicate that the complexity of CAN-A
is reduced hugely compared with VNE-MIP algorithm. In
addition, simulation results validate that average VNR
acceptance ratio and average virtual link propagation delay
of CAN-A outperform typical heuristic algorithms.

The rest of this paper is organized as follows. Section II
summarizes the related work. In Section III, virtual network
embedding problem formulation, notations, embedding process
and performance metrics are presented. Section IV details the
CAN-A algorithm. Simulations of CAN-A against typical
heuristic algorithms and pure MIP algorithm are illustrated in
Section V. Finally, conclusion and future work are described in
Section VI.

II. RELATED WORK

VNE, formulated as an unsplittable flow problem [27], aims
to realize optimal node and link mapping of each given VN
simultaneously. Numerous VNE algorithms have been
proposed in the literature. This section only discusses VNE
algorithms that are closely related to the CAN-A algorithm.
Any reader who has interest in other issues of VNE, such as
service level assignment (SLA) [23] and VN survivability
[24][33][34], can refer to references [6] and [7] for detailed
surveys.

In addition, we discuss the CAN-A algorithm and carry out
the simulation work in the fundamental VNE network scenario
(one SN and several given VNRs in a discrete time event).

Other complex network scenarios (e.g. occasional substrate
node / link failure [24][33][34], multiple shared SNs [37][38])
can be extended on the basis of fundamental VNE network
scenario.

A. Typical Heuristic VNE Algorithms
In the early stage of VNE research, most proposed VNE

algorithms are heuristic [6]，compromising global optimality
for short embedding execution time. This subsection introduces
typical heuristic algorithms in the literature.

Zhu et al. [9] proposes a one-stage VNE heuristic algorithm.
The goal of this heuristic algorithm is to achieve low load on
substrate nodes and links, with the assumption of infinite
substrate resources and no constraints of virtual node location.
Assumptions made in this algorithm are not applicable in real
networking environment. Therefore, this heuristic algorithm [9]
is not applicable.

In reference [10], a typical heuristic algorithm, proposed by
Yu et al., applies the greedy method to implement the virtual
node mapping in the first step. Dijkstra’s algorithm [32] and
multi-commodity flow approaches [27] are used to deal with
the link mapping in the second step. Yu et al. also introduces
the concept of path splitting to accept more proposed VNRs and
relieve substrate link loading. However, this algorithm leads to
a level of resource fragmentation that is unfeasible for
accepting VNRs with large sizes. Only constraints of node
capacity and link bandwidth are considered. In addition, there is
no restriction of the VNE solution space. If the size of SN
increases, computational complexity increases exponentially.

A backtracking algorithm based on sub-graph isomorphism is
proposed in reference [11]. Reference [11] manages to online
map virtual nodes and links per VN, taking constraints of node
capacity and link bandwidth into consideration. Other node and
link constraints, such as node location requirement, are not
considered. The computation complexity exponentially grows
with the size of VNR extending. In addition, the scale of
substrate network is limited. The execution time grows
exponentially with the substrate network scale expanding.
Therefore, this backtracking algorithm is not applicable to real
VNE implementation.

Cheng et al. [12] proposes a topology-aware node mapping
approach that uses the Markov Random Walk model to measure
the node capacity and joint link bandwidth. The virtual links, no
matter splittable or unsplittable, are then mapped to substrate
paths either using k-shortest path or multi-commodity flow
method. However, reference [12] will lead to the problem of
resource fragmentation in the long run, same to ref. [10].

The algorithm proposed in [14], based on the previous
conference version [13], is widely accepted as a representative
heuristic algorithm in VNE research area. Chowdhury et al.
firstly models the VNE problem by applying the mixed integer
programming (MIP) model of the optimization theory [31].
Due to the complexity of using pure MIP to solve a
medium-sized network directly, Chowdhury et al. has to
modify the MIP model into a linear programming (LP) model
and relax the integer constraints. Chowdhury et al. uses the LP
model to complete the virtual node mapping. If the solution of
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LP model is feasible, the virtual links are assigned to
corresponding substrate paths by using Dijkstra’s algorithm [32]
or multi-commodity flow [27] approach. Though Chowdhury
et al. coordinates node and link mapping, the algorithm in [14]
is not an efficient and effective VNE algorithm, in terms of
average VNR acceptance ratio in the long term.

Mijumbi et al. [20], developed from [21] and [22], is another
variation of [14] to solve the VNE problem. Node and link
constraints considered are node capacity and link bandwidth. In
the first step, [20] formulates the VNE problem by using the
pure MIP model [14]. Relaxing the binary variables to take on
continuous values, the MIP model is relaxed into a LP model.
With solving the LP model and getting the node mapping
results, the shortest path is selected again [32]. The authors then
derive the corresponding dual MIP model. The dual model is
used to ensure the selected paths legitimate. The VN
assignment which consumes less substrate resources is
preferred. The time complexity decreases a lot, compared with
solving the pure MIP model directly. However, the VNR
acceptance ratio of this heuristic algorithm can not behave well
in the long term, compared with the heuristics [12][14].

B. Representative Exact VNE Algorithms
With the rapid development of VNE algorithms, some

researchers also have turned to the exact algorithm research [7]
to find the optimal embedding of each given VNR. This
subsection discusses some representative exact VNE
algorithms in the literature. Software tools (GLPK [35],
CPLEX [36]) and suitable model (restricted ILP model) are
commonly used in the exact VNE algorithms.

Houdi et al. [15] proposes an exact algorithm to map one VN
across multiple SNs, fighting for the minimization of VN
provision cost. However, the cost metric is not defined clearly
in [15]. The authors use the max-flow and min-cut method to
split one VN into several sub-VNs firstly. The number of
sub-VNs is equal to the number of SNs. Then the LP model is
adopted to map each part of the VN to each corresponding SN.
Though splitting a VN reduces the complexity, [15] restricts the
solution space and can not find the optimal embedding of the
VN in the end. The topology and resource information of all
substrate networks, often unknown in practical networking
environment, are assumed to be available in [15]. Therefore,
this algorithm is not applicable to the real networking
implementation.

Betero et al. [16], a variation of reference [14], adds the
constraint of allowing more than one virtual node per VN to
map onto the same substrate node and uses the MIP model [14]
to deal with VNE problem directly. The goals of [16] are to
minimize the consumption of link bandwidth and the number of
active substrate nodes. This paper is also the first attempt to
consider energy awareness in VNE area. Only node capacity
and link bandwidth are taken into account in reference [16].
Due to the computational complexity of pure MIP model, the
sizes of SN and VNRs are set very small. Therefore, exact
algorithm proposed in ref. [16] can not be applied to real VNE
implementation. On the basis of reference [16], Su Sen et al.
[17][18] develops VNE energy aware algorithm.

While in reference [19], presented by Melo et al., a pure ILP
algorithm is proposed to solve VNE problem. The aims of [19]
are to minimize the VNR mapping cost and achieve substrate
load balancing. Two node and link constraints, node location
requirement and virtual link propagation delay, are mentioned,
but not analyzed. Node location constraint and virtual link
propagation delay constraint are not conducted in the
simulation work, either. Generally speaking, reference [19] is
an exact algorithm and fights for the substrate load balancing,
only considering node capacity and link bandwidth constraints.
The computation complexity of pure ILP algorithm [19] is very
high. Therefore, the pure ILP algorithm can not be applied in
the real networking environment.

C. Summary
To summarize, because VNE problem is NP-hard, previous

VNE heuristic algorithms make some unrealistic assumptions
for simplification, such as VNRs known in advance, infinite
substrate resources and ignoring virtual node or link constraint.
In addition, most heuristic algorithms solve the VNE problem
in two separate stages, using greedy method or LP model in
node mapping stage and optimizing the link mapping by
Dijkstra’s algorithm [32] or multi-commodity flow [27]
approach. For exact VNE algorithms, most of them use pure
MIP / ILP model and aim to embed proposed VNRs as many as
possible, thus leading to large algorithm execution time. In
general, only node capacity and link bandwidth constraints are
considered in previous VNE research. Other node and link
constraints are not considered and formulated.

The CAN-A proposed in this paper differs from previous
VNE algorithms mainly in four aspects. First of all, the CAN-A
algorithm is a combination of heuristic (candidate subset
construction) and exact (integer linear programming based
approach) algorithm. The heuristic part contributes to selecting
candidate substrate nodes and paths ahead. Therefore, the
number of binary variables, which are used in integer linear
programming based approach, will be largely cut down. This
leads to the huge reduction of algorithm execution time. The
optimal VN embedding will be found among the restricted
solution space. Secondly, the CAN-A conducts node and link
mapping of the given VNR in one stage. The node mapping is
an important stage in VNE since it determines the efficiency of
the following link mapping. Coordinating both stages will lead
to better resource utilization [14]. CAN-A combines both
stages into one stage which will further enhance the substrate
network resource efficiency. Next, apart from general node and
link constraints (node capacity and link bandwidth), virtual
node location and virtual link propagation delay are
incorporated as node and link constraints in CAN-A.
Particularly, the virtual link propagation delay is formulated as
node-link constraint for the first time in VNE algorithm. With
the increasing of delay sensitive services on the network,
guaranteed transmission delay is needed. The link propagation
delay constraint in CAN-A aims to offer delay guaranteed VNR
to meet future instant service requirements [30]. Finally,
authors of this paper make a comprehensive simulation work
comparing with typical heuristic algorithms and the exact MIP
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algorithm. The efficiency and effectiveness of the CAN-A
algorithm are validated.

III. NETWORK MODEL AND VNE PROBLEM DESCRIPTION

This section elaborates on the VNE network model and VNE
problem description. The substrate network and virtual network
request models are described firstly. The main index notations
throughout this paper are listed in Table I. The measurements of
network resources are introduced in the following subsection.
Afterwards, the embedding process of VNR is presented. For a
better understanding of the VNR embedding process in the
VNE system, a diagram is also plotted. Finally, several
important VNE performance metrics are defined.

A. Network Model Description
1) Substrate network: The substrate network is modeled as a

weighted undirected graph GS=(NS, LS), where NS is the set of
all substrate nodes and LS is the set of all substrate links. Each
substrate node m Î NS is characterized by its node
capacity, m

SC , and the node location, loc(m). The location of
substrate node m, loc(m), is defined on x and y coordinates in
this paper. With respect to substrate links, each substrate link
mn has a finite bandwidth Bmn

S and a predefined link
propagation delay mn

SD . Due to the nature of undirected graph of
SN, the value of S

mnB is equal to
nm
SB . In addition, the set of all

substrate paths in the SN is denoted by notation PS. The mn
SP is

the set of all paths between end nodes m and n without any loop.
mnP is one path selected from the mn path set, mn

SP . In this

paper, each single substrate link is assumed to have one unit
time link propagation delay. That is to say, the link propagation
delay of one selected path

mnD can be seen as the number of
substrate links in the substrate path mn.

The right part of Fig. 1 shows a substrate network. The
numbers on the links are available link bandwidth, and numbers
in rectangles are available node capacity. For simplicity, the
location of each substrate node is omitted in this figure.

2) Virtual network request: A virtual network request is
modeled as a weighted undirected graph GV=(NV, LV), where
NV is the set of all virtual nodes of the VNR, and LV is the set of
all virtual links of the VNR. Each virtual node M is
characterized by the required node capacity,

M
VC , and the

desired virtual node location, Loc(M). The maximum allowed
location deviation of virtual node M is LR(M). Expression 1
shows the location deviation relationship between virtual node
M and its candidate substrate node m. The location deviation
must be within the radius LR(M) of M. With respect to each
virtual link MN , it has a required bandwidth

MN
VB and maximum

allowed link propagation delay
MN
VD .

The left part of Fig. 1 presents two virtual network requests.
The numbers over the links are required link bandwidth. The
numbers in rectangles are node capacity demands of virtual
nodes. The location requirement of any virtual node is set as a
pair of real numbers on x and y coordinates, along with its
required location deviation LR(M).

D is(loc( ), Loc( )) LR ( )m M M (1)

Fig. 1. One Substrate Network and Two Virtual Network
Requests

3) VNE Notations: The main notations used throughout this
paper are listed in Table I.

Table I
VNE NOTATIONS

G(NS,LS) Substrate Network
G(NV,LV) Virtual Network
m, n Substrate Nodes

mn, nm Substrate Links
M, N Virtual Nodes
MN,
NM

Virtual Links

mn
SP Set of Paths that start from source node m to

end node n

mnP One Selected Path from the path set Pmn
S

m
SC Node Capacity of Substrate Node m

M
VC Node Capacity Requirement of Virtual Node

M
loc(m) Location of Substrate Node m on x and y

coordinates
Loc(M) Location Requirement of Virtual Node M on

x and y coordinates

mn
SB Link Bandwidth of the Substrate Link mn

mnB Link Bandwidth of one selected Substrate
Path mn

MN
VB Link Bandwidth Requirement of the Virtual

Link MN

mn
SD Link Propagation Delay of the Substrate

Link mn

mnD Link Propagation Delay of one Selected
Substrate Path mn from the path set Pmn

S

MN
VD Link Propagation Delay Requirement of

Virtual Link MN
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B. Measurements of Network Resources
In VNE, to quantify the resource usage of substrate nodes,

the remaining or available node capacity of a substrate node
RS(m) is defined as follows:

  
( )



 S SR = C C V
m M

M m
m (2)

where M↑ m denotes that the virtual node M is mapped onto the
substrate node m.

Similarly, the available bandwidth of each substrate link is
determined by the bandwidth before the VN mapping and the
consumed bandwidth after the VNE assignment. Expression 3
below shows the definition of available link bandwidth.

  
( )


S S VR = B Bmn MN

MN mn
mn  (3)

where MN↑mn denotes that virtual link MN passes through the
substrate link mn after conducting the embedding of the VNR.

As known in VNE, every virtual link per VNR may occupy
one or more substrate paths after two end nodes of the virtual
link are mapped. Though no link aggregation assumption
(splittable flow) in this paper, one substrate path may
accommodate one or more substrate links. On these basis, the
available bandwidth of one substrate path mn is given by
follows:

( ) min ( )


S S

P
R P = R

mn
mn ab

ab (4)

where one selected single substrate path mn is made up of one
or more substrate links, the substrate link ab included.

C. Embedding Process of VNR
When a VNR arrives, the SN will firstly determine whether

to accept the VNR or not, according to the available network
resources of the SN. If the VNR is accepted, the SN will refer to
one specific VNE algorithm for embedding the VNR and spare
enough substrate resources to fulfill all resource requirements
of the VNR. When the VNR expires, the allocated resources are
returned to SN again. For a better understanding of VN
embedding, the embedding process of one VNR is depicted in
Fig. 2 on the right.

In general, the embedding of a VNR onto the shared SN is
made up of two components: the component that deals with the
mapping of virtual nodes, and the component that ensures the
mapping of virtual links.

1) Virtual Node Embedding: Each virtual node of the same
VNR must be assigned to a different substrate node of SN. The
assignments of all virtual nodes are determined by a
node-mapping function MN( ) : NV→ NS.
MN(M) ÎNS

MN(M) = MN(N),if and only if M=N
subject to

N( ( ))V SC RM M M (5)

NDis(loc( ( )), Loc( )) LR( )M M M M (6)
where expression 5 aims to ensure that the node capacity
requirement of any virtual node M must not exceed the
remaining capacity of the selected substrate node MN(M) that
accommodates virtual node M; expression 6 aims to ensure that
the deviation between any virtual node M and the selected
substrate node MN(M) must not exceed the radius LR(M) of

virtual node M. During the node embedding component, both
expressions must be fulfilled at the same time.

2) Virtual Link Embedding: In this paper, each virtual link of
the same VNR is mapped onto a single substrate path
(unsplittable flow) between two substrate nodes. Both substrate
nodes have hosted two virtual nodes of the virtual link. This
guarantees no interference among virtual links. The link
embedding is implemented according to the link-mapping
function ML( ): LV→ PS for all virtual links of the VNR.
ML(M, N) Í PS(MN(M), MN(N))
subject to

    (P )VB R
N NMN M NMM  S (7)

   
VD D

N N MNNM M M  (8)

where expression 7 is to ensure that the link bandwidth demand
of any virtual link MN must not exceed the available bandwidth
of the selected substrate path that accommodates virtual link
MN; expression 8 is to ensure that the propagation delay of the
selected substrate path MN(M)MN(N) must not violate the
required virtual link MN propagation delay

MN
VD . During the

link embedding component, expression (7) and expression (8)
must be fulfilled simultaneously.

Fig. 2. The Diagram of One VNR Embedding

D. Performance Metrics
In order to assess the performance of any VNE algorithm and

compare with other VNE algorithms, performance metrics are
necessary to be defined. This subsection introduces some
important performance metrics, commonly used in VNE.

1) The revenue of a VNR: Similar to the definition in [13]
and [14], the revenue of a VNR is defined as :

N L

(G )=α +β  
V V

V V VC BM MN
M M

Rev
 

(9)

As derived from the expression 9, the revenue of a VNR is
set to be the sum of all virtual node capacity and virtual link
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bandwidth of this VNR [6]. Weight factors (α and β) are used to
balance different types of network resources.

2) The cost of a VNR: Expression 9 gives an insight into how
much revenue can be earned by accepting a VNR. In order to
evaluate how much substrate resources consumed for a VNR,
expression 10 formulates the cost of an embedded VNR:

N L P

(R )=    
V V S

mn

V V V

mn

C D BM mn MN
M MN

Cos
  

 (10)

As assumed before, all single substrate links has the same
propagation delay (one time unit). Therefore, the propagation
delay of a substrate path indicates the number of substrate links
in this path. The cost of substrate links is defined as the sum of
the product of path propagation delay and consumed virtual
link bandwidth.

3) VNR acceptance ratio: The VNR acceptance ratio, shown
in expression 11 below, is used to evaluate an algorithm’s
ability of batch processing VNRs. VNR acceptance ratio is an
important metric for the performance evaluation of VNE
algorithms. It is determined by the number of successfully
mapped VNRs a' and the number of proposed VNRs a in a
timetable:

VNA = a'
a (11)

Some other metrics, such as average node / link utilization,
average virtual link propagation delay, and execution time, can
be found in reference [6] and [7]. Because of limited pages,
details of these metrics are not discussed here.

IV. CANDIDATE-ASSISTED (CAN-A) ALGORITHM FOR VNE
This section presents the CAN-A algorithm with huge

reduction of mapping execution time, meanwhile without loss
of the main performance indices. The candidate node subset
and candidate path subset constructing approaches are
discussed at first. Then, the variables and constraints of CAN-A
algorithm are formulated. At last, four different objective
functions of CAN-A algorithm are discussed. Each objective
function represents one sub-algorithm of CAN-A algorithm.
Notations and metrics used in this section are same to what are
defined in Section III.

A. Candidate Subset Construction

Candidate subset construction aims to select candidate
substrate nodes and candidate substrate paths for a given VNR.
This process intends to reduce the execution time of the
following embedding (Section IV-B&C&D), which is based on
integer linear programming approach.

Every time a VNR comes, the location constraints of all
virtual nodes are considered at first. The required location of
one virtual node M is defined by x and y coordinates, (XM, YM).
In this phase, the virtual node M is mapped onto one substrate
node m, (Xm, Ym), within the allowed location deviation LR(M).
Expressions 12 and 13, the detailed version of expression 6,
aim to ensure that Euclidean Distance between M and m must
not exceed the allowed location deviation LR(M) of virtual
node M. All substrate nodes that are within the allowed location
deviation LR(M) of virtual node M make up the candidate
substrate node set of virtual node M. To sum up, the number of

candidate substrate node sets is equal to the number of virtual
nodes in the given VNR. To deal with the occasional situation
where two different virtual nodes (M and N) have the same
candidate substrate node, m, within their allowed location
deviations. The smaller allowed location deviation of the
virtual node, M or N, will prefer the substrate node m as its
candidate substrate node.

NDis(loc( ( )), Loc( ))

                   ( ) ( ) 2 2
M m M m

M M M

X X Y Y  
(12)

( ) ( ) ( )2 2
M m M mX X Y Y LR M    (13)

After candidate substrate node sets of all virtual nodes are
constructed, the variable k, related to virtual link propagation
delay, is assisted to construct the candidate substrate path sets
of all virtual links.

To each virtual link of the VNR, the concrete value of
variable k is different. For example, the value k of one virtual
link MN is set to be 3. That is to say, the propagation delay of
one selected substrate path (without any loop), starting from
one candidate substrate node of the virtual node M to one
candidate substrate node of the virtual node N, must not exceed
3. All the selected substrate paths, with their propagation delays
no exceeding 3, make up the candidate substrate path set of the
virtual link MN. To other remaining virtual links of the VNR,
the corresponding candidate path sets are constructed, based on
the required values of variable k. The reason for different
virtual links having different values of k is that any two end
nodes in the same VNR may have different link propagation
delay demands in real networking environment. Overall, the
value of variable k for each virtual link of the VNR is enable to
assist to select candidate substrate paths whose total
propagation delay is within its corresponding required virtual
link propagation delay. That is to say, the procedure of
constructing candidate substrate path sets assure the candidate
substrate paths within the required virtual link propagation
delay ahead. The following integer linear programming
approach enables to find the optimal VNR embedding from the
candidate substrate node and path sets. For a better
understanding, the pseudo code of Candidate Subset
Construction is shown below.

Candidate Subset Construction
Input: One given VNR and the updated SN
Output: Candidate Substrate Nodes Subset and Candidate

Substrate Paths Subset of VNR for the next mapping
1. while there is unprocessed virtual nodes and virtual links do
2. Picking out unprocessed virtual nodes and virtual links
3. for each virtual node of the VNR do
4. select the corresponding candidate substrate nodes of each

virtual node (VNR), according to Expressions 12 and 13
5. end for
6. for each virtual link MN in the VNR
8. Select the candidate substrate paths of the virtual link MN,

according to the corresponding value of variable k (k
represents the required virtual link propagation delay of
virtual link MN). Different virtual links have different k
values

9. end for
10. end while
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After completing the Candidate Subset Construction
process, candidate substrate node sets and candidate path sets
of the given VNR have been constructed. In the second phase,
we formulate the mapping / embedding algorithm via using the
integer linear programming approach. The constructed
candidate node subsets and candidate path subsets are much
smaller than the whole node sets and the whole path sets. This
will lead to huge reduction of mapping execution time in the
second phase obviously.

B. Variables
The binary variable x is used for the assignment of any

virtual node M to any substrate node m. x is defined in
expression 14. With respect to the virtual links per VN, the
binary variable y is defined in expression 15.

1) Virtual Node Variable:
1,    
0,    

m
M

M m
x

ìï= í
ïî

virtual node  is mapped onto substrate node 
else

(14)

2) Virtual Link Variable:

1,    
0,    

virtual link  is mapped onto one subtrate path 
else

mn
MN

MN mn
y

ìï= í
ïî

(15)

C. Constraints
To ensure the correct embedding of virtual nodes and links

and obey to the conservation law of substrate nodes and links,
concerning constraints are formulated and presented below.

1) Virtual Nodes’ Mapping to Substrate Nodes: Expression
16 below aims to assure that once any virtual node M is to be
mapped, only one substrate node m is assigned to that virtual
node M.

, 1V m
M

m
M N xå" Î = (16)

2) Substrate Nodes’ Mapping to Virtual Nodes: Expression
17 is to ensure that each substrate node in the SN can
accommodate no more than one virtual node M. Expressions 16
and 17 vividly describe the mapping relationship between
virtual node M and substrate node m in VNE.

, 1S m
M

M
m N x   (17)

3) Conservation of Node Capacity: Expression 18 aims to
ensure that each selected substrate node m must have reserved
available node capacity for accommodating the node capacity
demand of virtual node M that maps onto m.

, S m V S
M M m

M

m N x C C   (18)

4) Assignment of Virtual Links to Substrate Paths:
Unsplittable flow constraint [27] is applied in our paper. Each
virtual link MN is allocated to one selected substrate path with
fulfilling the node requirements of two end nodes. Due to the
goal of achieving the minimization of average virtual link
propagation delay, it is essential to adopt to the unsplittable
flow constraint. Multi-commodity flow constraint will
contribute to the increase of virtual link propagation delay.
Simulation in the Section V proves this issue true. Expression

19 shows the unsplittable flow constraint of virtual links.
, , ( )V S mn mn m n

mn MN NM M M
mn

MN L mn P y y x xå" Î $ Î - = - (19)

5) Link Bandwidth Conservation: Expression 20 aims to
ensure that the selected substrate path mn must spare enough
link bandwidth to fulfill the bandwidth demand of virtual link
MN that is mapped onto the selected substrate path mn.

, , ( )S V V mn mn
mn MN MN NM mn

mn
mn P MN L B y y B      (20)

6) Propagation Delay Limitation of Virtual Links: The
virtual link propagation delay constraint is shown in expression
21. The propagation delay of one selected substrate path mn,
mapping onto virtual link MN, must not violate the required
virtual link propagation delay MN

VD . In previous VNE research,
the virtual link propagation delay has not been considered and
formulated. Together with the variable k for selecting candidate
substrate paths of virtual link MN (subsection A), expression
21 further assures that any selected substrate path propagation
delay Dmn must be within the required virtual link propagation
delay

MN
VD . Virtual link MN maps onto the substrate path mn.

, , ( )V S mn mn V
mn mn MN NM MN

mn
MN L mn P D y y D      (21)

D. Objective Functions
Objective function of CAN-A algorithm enables to optimize

the allocation of substrate resources. In this subsection, we
propose four different objective functions. Each objective
function is regarded as one sub-algorithm of the CAN-A
algorithm.

1) Cost Function (CF): In general, the dominating aspect in
VNE research is to minimize the cost of accepted VNRs in
order that more substrate resources can be reserved and
available. Leaving more substrate resources will lead to
accommodating more proposed VNRs. According to the
expression 10, the CF is constructed. The CF, aiming at
consuming less substrate node capacity and link bandwidth, is
formulated in expression 22 below. α and β are weight factors
in this expression. Similar to references [14] and [19], α and β
are set to be equal in this paper.
min  ( )     m V mn mn V

M M MN NM MN mn
M MN mn
x C y y B D  (22)

2) Link Propagation Delay Function (LDF): Different from
the objects of previous algorithms [14][19], this part aims to
minimize overall link propagation delay of accepted VNRs. As
known to all, the link propagation delay affects Quality of
Service (QoS) a lot, especially for delay sensitive services.
Delay sensitive service needs guaranteed delay, for instance
5ms maximal end-to-end delay. However, it is hard to study the
propagation delay of each concrete network link in detail. For
simplicity, an assumption that each substrate link has the same
unit time propagation delay is made in this paper. The object
function LDF is shown in expression 23. The value of α is
equal to the weight factor in CF.
min  ( )   mn mn

MN NM mn
MN mn

y y D (23)
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3) Cost and Load Balancing Function (CLBF): Expression
22 goes well in situations where the SN has abundant network
resources. When the degree of flexibility in the resource
assignment process is of great importance, it is necessary to
consider VN cost and substrate load balancing at the same time.
Both two goals can be constructed and achieved. Expression 24
below is the objective function CLBF. Similar to references [14]
and [19], α and β are set to be equal.

( )min 
( ) ( )

 
  

mn mn Vm V
MN NM MN mnM M

S S
m M mn MN

y y B Dx C
R m R mn


 (24)

4) Cost and Link Propagation Delay Function (CLDF):
CLDF in this part takes the embedding cost of SN and the total
link propagation delay of accepted VNs into account at the
same time. On the one hand, CLDF manages to minimize the
cost of accepted VNRs. On the other hand, the overall link
propagation delay of accepted VNRs is also to be minimized.
CLDF is formulated in expression 25. According to the
simulation, conducted in Section V, weight factors (α and β) are
set to be smaller than γ, aiming to highlight the total link
propagation delay in the object CLDF.
min ( )

       ( )

    

 

 



m V mn mn V
M M MN NM MN mn

M m MN mn

mn mn
MN NM mn

MN mn

x C y y B D

y y D

 


(25)

V. PERFORMANCE EVALUATION

This section presents the simulation settings followed by the
simulation results. This section elaborates on quantifying the
advantages of CAN-A algorithm. Typical heuristic algorithms
and the pure MIP algorithm are selected to compare with
CAN-A by varying the number of VNRs per timetable [14].
The number of VNRs per timetable in this paper is equivalent to
the number of VNRs per time window [14][19].

A. Simulation Environment and Settings
To evaluate the CAN-A, a discrete event simulator in JAVA

has been implemented. The open source software tool GLPK
[35] is used to solve the linear programming problem of
CAN-A. Since network virtualization is still an emerging field,
the actual characteristics of the substrate network and virtual
networks are still not well understood. Therefore, synthetic
network topologies are used to evaluate VNE algorithms in this
paper. The simulation is implemented in the ‘Simulation
Platform for Scotfield Cao’ [39], originating from the
open-source project ALEVIN [40]. The CAN-A algorithm,
coded by the authors, is added to ‘Simulation Platform for
Scotfield Cao’. Part codes of ‘Simulation Platform for Scotfield
Cao’ are made available to public [41].

In this paper, the substrate network is generated by using the
Waxman topology approach [42], which is integrated as a
separate function module in ‘Simulation Platform for Scotfield
Cao’. Two substrate networks with different sizes are generated.
The larger one is a medium-scaled substrate network. The
number of substrate nodes is set to be 40. Set α=0.4 and β=0.3
in the Waxman model of substrate network. The node capacity
and link bandwidth of substrate nodes and substrate links are
integers uniformly distributed between 50 and 100. Each

substrate node is randomly located within a uniformly
distributed position between 0 and 100 on x and y coordinates.
The link propagation delay of all substrate links are set to be
one time unit. With respect to the other substrate network, it is
small size. The number of substrate nodes is set to be 20. Other
parameters of the small-sized substrate network are same to
what are set in the medium-sized substrate network.

VNRs are generated by using Waxman topology approach,
too. It is set that VNRs arrive in a Poisson process. Simulations
are evaluated by varying VNRs arrival rate from 2 VNs per
timetable to 9 VNs per timetable. The arrival rate increases by 1
each time. Each VNR has an exponentially distributed lifetime
with an average value of μ=1000 time units. These parameters
are similar to what are set in references [14] and [19]. To each
VNR, the number of virtual nodes is an integer and follows a
uniform distribution between 2 and 8. Link parameters of each
VNR are same to what are set in substrate links. The node
capacity and bandwidth requirements of virtual nodes and
virtual links are integers, uniformly distributed between 1 and
20. Virtual nodes are randomly located within a uniformly
distributed position between 0 and 100 on x and y coordinates.
The maximum allowed deviation of each virtual node is an
integer and uniformly distributed between 3 and 8. Each virtual
link propagation delay is an integer and uniformly distributed
between 1 and 4.

To avoid an insight into two opposite scenarios, such as a
very high or low VNR acceptance ratio, many trials are
necessary to be conducted for each arrival rate. In this paper, 30
trials are made for each VNR arrival rate. In each trial, a new
set of VNRs and a new substrate network are generated. All
simulations are set to run up to 50000 time units to remove the
initial transient phase effect [43] and to present the steady-state
performance. Based on these settings, a confidence interval of
95% is achieved for all simulation results.

All simulations for different VNE algorithms are run on a
Window 8 Desktop, with an Intel® Core (TM) CPU i7-4790
3.6GHz Processor and 16.00G RAM Machine. The time per
VN embedding is registered. The GLPK version 4.58 is used to
solve the linear programming problem of CAN-A and
VNE-MIP. Among four sub-algorithms, weight factors (α and β)
are set to be 1 in this paper. γ is set to be 10. To the VNRs
proposed in a timetable, the VNR with smaller revenue is
preferred [10]. Evaluation metrics are derived from the Section
III-D and reference [6]. Simulation results are depicted in
Section V-D & E.

B. Selected VNE Algorithms for Comparison
Ten VNE algorithms, including the CAN-A, make up the

simulation part. The remaining nine VNE algorithms are
Greedy Node Mapping with Shortest Path Link Mapping (G-SP)
[10], Greedy Node Mapping with Multi-Commodity Flow Link
Mapping (G-MCF) [10], Randomized Coordinated Node
Mapping with Shortest Path Link Mapping (R-ViNE-SP) [14],
Deterministic Coordinated Node Mapping with Shortest Path
Link Mapping (D-ViNE-SP) [14], Randomized Coordinated
Node Mapping with Multi-Commodity Flow Link Mapping
(R-ViNE-MCF) [14], Deterministic Coordinated Node
Mapping with Multi-Commodity Flow Link Mapping
(D-ViNE-MCF) [14], Node Ranking Node Mapping with
Shortest Path Link Mapping (NR-SP) [12], Node Ranking
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Node Mapping with Multi-Commodity Flow Link Mapping
(NR-MCF) [12] and the pure Mixed Integer Programming
VNE algorithm (VNE-MIP) [14] (see Appendix). These
algorithms are representative VNE algorithms in VNE research.
These algorithms are all slightly modified to fit into the
simulation of our paper. All VNE algorithms are enumerated in
Table II below, along with short descriptions.

Table II
VNE ALGORITHMS for COMPARISON

Notation Description
G-SP
[10]

Greedy Node Mapping with Shortest Path Link
Mapping

G-MCF
[10]

Greedy Node Mapping with Multi-Commodity
Flow Link Mapping

R-ViNE-
SP [14]

Randomized Coordinated Node Mapping with
Shortest Path Link Mapping

D-ViNE-
SP [14]

Deterministic Coordinated Node Mapping with
Shortest Path Link Mapping

R-ViNE-
MCF
[14]

Randomized Coordinated Node Mapping with
Multi-Commodity Flow Link Mapping

D-ViNE-
MCF
[14]

Deterministic Coordinated Node Mapping with
Multi-Commodity Flow Link Mapping

NR-SP
[12]

Node Ranking Node Mapping with Shortest
Path Link Mapping

NR-MC
F [12]

Node Ranking Node Mapping with
Multi-Commodity Flow Link Mapping

VNE-MI
P [14]

Pure Mixed Integer Programming based VNE
Algorithm

CAN-A-
CF

CAN-A for Minimizing Overall Substrate Cost

CAN-A-
LDF

CAN-A for Minimizing Overall Virtual Link
Propagation Delay

CAN-A-
CLBF

CAN-A for the Minimization of Overall
Substrate Cost and Load Balancing

CAN-A-
CLDF

CAN-A for Minimizing Overall Substrate Cost
and Virtual Link Propagation Delay

C. Simulation Comparisons

The simulation work is composed of two parts. One part is
the simulation comparison which includes the heuristics,
VNE-MIP and CAN-A-CLBF. The aims of this part are to
prove that the execution time of CAN-A is hugely cut down
compared with MIP algorithm. Since VNE-MIP requires a very
long time (in excess of about half an hour for a single
embedding involving a SN of 50 nodes and a VNR of 10 nodes)
to perform each VN embedding, network parameters in this
part are restricted to a SN with 20 nodes and VNRs with nodes
from 2 to 5. The other part is to use a medium-scaled substrate
network of 40 nodes and excludes the pure VNE-MIP. This part
elaborates on highlighting the efficiency and effectiveness of
CAN-A, compared with the typical heuristics in the literature.

D. Exact and Optimal Algorithm CAN-A-CLBF
Derived from [14], the pure VNE-MIP, based on the MIP

model, has been widely accepted as an exact and optimal
algorithm in the literature. However, the NP-hard nature of MIP

leads to high computation complexity. The VNE-MIP is not
applicable in medium or large-scaled network scenarios. To
prove that CAN-A-CLBF can be treated as another exact and
optimal algorithm, a simulation is made in this subsection. The
CAN-A-CLBF, having the same objective function with
VNE-MIP, is selected from the CAN-A algorithm. Four
representative heuristic algorithms, G-SP, G-MCF, ViNE-SP
and ViNE-MCF, are also selected. Deterministic and
randomized rounding techniques are not particularly labeled.
Thus labeling ViNE-SP and ViNE-MCF. Simulation results
are plotted ranging from Fig. 3 to Fig. 7 as a function of VNRs
arrival rate in a timetable.

1) Quality of CAN-A-CLBF: Fig. 3 below shows the VNR
acceptance ratio as a function of VNRs arrival rate. It is evident
that CAN-A-CLBF has a close average VNR acceptance ratio
to what is obtained by VNE-MIP. Other heuristic algorithms
have a percentage of, at least 10%, lower than VNE-MIP and
CAN-A-CLBF. That is to say, CAN-A-CLBF is able to behave
as well as the VNE-MIP, in small-scaled network scenario. Fig.
4 and Fig. 5 are also plotted to indirectly prove the embedding
ability of CAN-A-CLBF. The node and link utilization of
CAN-A-CLBF are very close to that of VNE-MIP. The node
utilization of CAN-A-CLBF is higher than the heuristics in
general. It is owing to the fact that the CAN-A-CLBF enables to
accommodate more proposed VNs by using the mathematical
programming method after conducting the candidate subset
processing. Therefore, CAN-A-CLBF uses the substrate
network resources to their full capacity. The heuristics solve
VNE problem only by referring to the variable-relaxed
mathematical model or pure heuristic methods. A feasible
solution is found and the optimal mapping is not able to be
achieved in many cases. With respect to the link utilization in
Fig. 5, the reason is same to what is explained for the node
utilization in Fig. 4.
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Fig. 3. VNR Acceptance Ratio as a function of VNRs Arrival Rate

In Fig. 6, it is apparent to discover that the average virtual
link propagation delay of VNE algorithms that do not support
path splitting, such as G-SP, ViNE-SP and CAN-A-CLBF, is
lower than algorithms that support path splitting, G-MCF,
ViNE-MCF and VNE-MIP. For example, to G-SP, a virtual
link may just occupy two substrate links, making up a substrate
path, in the link mapping, with link bandwidth and link
propagation delay constraints fulfilled. To G-MCF, the virtual
link is mapped onto two different substrate paths. One path
occupies two substrate links while the other occupies three. The
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average virtual link propagation is 2.5 substrate links.
Therefore, the average virtual link propagation delay of G-SP is
lower than G-MCF.

2 2.5 3 3.5 4 4.5 5
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

The Number of VNRs per timetable

Av
era

ge
 N

od
e U

tili
za

tio
n

G-SP
G-MCF
ViNE-SP
ViNE-MCF
CAN-A-CLBF
VNE-MIP

Fig. 4. Node Utilization as a function of VNRs Arrival Rate
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Fig. 5. Link Utilization as a function of VNRs Arrival Rate
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Fig. 6. Virtual Link Propagation Delay as a function of VNRs Arrival
Rate

Numerical results are plotted as shown in Fig. 6, after a lot of
trials. For a better performance of average virtual link
propagation delay, CAN-A ought not to support path splitting,
as mentioned in Section-IV.

2) Time Complexity of CAN-A-CLBF: With respect to the time
complexity, Fig. 7 illustrates that the G-SP, G-MCF, ViNE-SP
and ViNE-MCF have comparatively low execution time than
that of CAN-A-CLBF. G-SP is not a mathematical algorithm
and is therefore of low time complexity. While to the other

three heuristics, it lies in solving the relaxed LP model. Though
solved in polynomial time, they have higher execution time
than the G-SP. To the CAN-A-CLBF, candidate substrate node
and path sets of the given VNR are constructed ahead. The
number of binary variables decreases a lot. The following ILP
model is restricted to be solved in reasonable time. However,
the execution time of ILP model is still higher than the relaxed
LP model through numerous simulations. To the pure
VNE-MIP, the execution time grows exponentially in Fig. 7.
The pure VNE-MIP algorithm is therefore applicable with the
size of network scenario expanding.
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Fig. 7. Execution Time as a function of VNRs Arrival Rate
According to the illustrations in 1) and 2), it can be

concluded that CAN-A-CLBF can be regarded as another exact
and optimal VNE algorithm in VNE. Compared with
non-optimal heuristic algorithms, CAN-A algorithm insures the
optimal mapping solution for any given virtual network request.
At the same time, the computational complexity is much lower
when comparing with the optimal VNE-MIP algorithm.

E. Efficiency and Effectiveness of CAN-A Algorithm
1) VNR Acceptance Ratio: Fig. 8 presents the average VNR

acceptance ratio as a function of VNRs arrival rate. VNR
acceptance ratio is an important metric in evaluating different
VNE algorithms. Fig. 8 shows that the acceptance ratio of all
selected algorithms almost decays linearly with the variation on
the VNRs. This decay shows the fact that there are no infinite
substrate resources for embedding increasing proposed VNRs.
In addition, the CAN-A outperforms the selected heuristics.
The differences between the best heuristic and CAN-A-CF is at
least 10%. It runs as expected because pure ILP model is
applied to solve the VNE problem after candidate subset
processing. Therefore, optimal mapping of each VNE problem,
with regard to one concrete object, can be obtained in restricted
solution space. With respect to the heuristics, a feasible
mapping is tried to be found. Another reason for the results is
the nature of the CAN-A. The CAN-A considers the universe of
all possible embedding solutions in the restricted solution space,
rather than a few solutions. For example, the first case with 2
VNRs in a timetable, the CAN-A will accept all VNRs, while
the acceptance ratios of the remaining heuristics are between
68% and 88%. The CAN-A-CLBF achieves the highest
acceptance ratio while the lowest ratio is obtained by G-SP.

On the whole, the CAN-A outperforms the heuristics in all
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scenarios. CAN-A is an efficient and effective VNE algorithm.
If the feasible assignment of a network scenario exists, the
CAN-A will find out the optimal assignment in allowed
convergence accuracy and restricted solution space. However,
it is not always the case for the heuristic algorithms. Frequently
a feasible assignment will be found out though it might be the
optimal mapping.
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Fig. 8. VNR Acceptance Ratio as a function of VNRs Arrival Rate

2) Node Utilization: The average node utilization as a
function of VNRs arrival rate is depicted in Fig. 9. With the
arrival rate increasing, the node utilization of all selected
algorithms increases, too. When the number of VNRs is small,
i.e., 2 VNRs, the node utilization does not go beyond 28% and
34% for the heuristics and CAN-A respectively. As illustrated
in Fig. 9, the CAN-A consumes more resources of substrate
nodes than the heuristic algorithms. It runs as expected
according to the performance of VNR acceptance ratio. The
reason for CAN-A having a larger node utilization than the
heuristics lies in CAN-A’s ability of accommodating more
VNRs than the heuristics. When the number of VNRs is large,
the CAN-A algorithm is able to embed VNRs effectively and
loads the substrate nodes to full capacity.

The node utilization also shows a dependency on the VNR
acceptance ratio, as it can be perceived from Fig. 8 and Fig. 9.
To get a better understanding of this dependency, the product of
VNR acceptance ratio and node utilization is plotted in Fig. 10.
It is obvious that the heuristics, such as G-SP, D-ViNE-SP and
NR-SP, have the same behavior for all VNRs. The products of
the heuristics are nearly constants. However, it is not same to
the CAN-A. The product of CAN-A increases until 6 VNRs per
timetable. The product nearly keeps the same behavior with
arrival rate increasing beyond 6. It is owing to the fact that the
CAN-A keeps with the increase until the VNE problem changes
from an optimization problem (enough substrate resources for
mapping VNRs) to a feasible problem (no sufficient substrate
resources for embedding VNRs). With respect to different
objects of CAN-A, the number of VNRs has a little difference,
shown in Fig. 10. The product of CAN-A-CF is a constant from
5 VNRs per timetable. When to the other three sub-algorithms,

the VNR arrival rate is up to 6.
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Fig. 9. Node Utilization as a function of VNRs Arrival Rate
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3) Link Utilization: The link utilization is plotted in Fig. 11
and does not have the same behavior according to the VNRs
arrival rate for all algorithms (Fig. 9, for the node utilization). It
is evident that the CAN-A algorithm, especially for
CAN-A-CLBF, has lower utilization on the substrate links; in
the extreme scenario (9 VNRs per timetable) the average link
utilization of CAN-A-CLBF is around 51%. With respect to the
highest link utilization, R-ViNE-SP and D-ViNE-SP have link
utilization of around 72% and 70%.

The differences in link utilization result from the link
mapping strategy. For instance, if the object is to consume less
bandwidth, the shortest path method (SP) will be adopted and
the corresponding average link utilization will be high.
Multi-commodity flow method (MCF) may contribute to the
decrease of link utilization. Since the node and link mappings
are two separate components in VNE, the performance of node
mapping will have a great influence on the following link
mapping stage. In Fig. 11, these algorithms (i.e. NR-SP, G-SP),
which use greedy node mapping, have a lower link utilization
though MCF is adapted in the link mapping. Based on this, it is
of great importance to simultaneously map virtual nodes and
links according to the mathematical programming model.
Therefore, the CAN-A behaves well in link utilization.
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Fig. 11. Link Utilization as a function of VNRs Arrival Rate
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Fig. 12. VNR Acceptance Ratio Multiply Link Utilization as a
function of VNRs Arrival Rate

The link utilization also has a dependency on the VNR
acceptance ratio, as observed in Fig. 8 and Fig. 11. To further
understand the dependency, the VNR acceptance ratio multiply
the link utilization is plotted in Fig. 12. Overall, CAN-A
increases significantly until the arrival rate is increased to 5.
CAN-A starts to decrease or increase to a stable constant after 6
VNRs in a timetable. With respect to the selected heuristic
algorithms, these products are almost constants, except G-SP.

4) Virtual Link Propagation Delay: Fig. 13 shows the
average virtual link propagation delay as a function of VNRs
arrival rate. Comparatively speaking, it runs as expected that
with the number of VNRs increasing, the average virtual link
propagation delay of all selected algorithms increases, same to
the node / link utilization illustrated before. To all selected
algorithms, it is more likely to have the substrate paths,
consisting of more substrate links, mapped onto virtual links in
order that more proposed virtual network requests can be
accommodated.

In addition, two main discoveries can be also derived from
the Fig. 13. The first discovery is that the VNE algorithms, such
as G-MCF, that support path splitting and adopt to the
multi-commodity flow method, will lead to a larger average
virtual link propagation delay than other algorithms, i.e. G-SP,
that do not support path splitting. This is true as illustrated in
above subsection D. The second discovery is that the proposed

CAN-A has a better virtual link propagation delay than all the
heuristics. This discovery lies in the candidate subset
construction and ILP model of CAN-A. With running the
CAN-A, at most one intermediate node is allowed in the link
mapping stage. The substrate propagation link is set to be one
time unit in this paper. Therefore, the average virtual link
propagation of CAN-A is within 1 and 2. One indirect proof of
supporting the second discovery is that the advantage of VNR
acceptance ratio of CAN-A model is not apparent than that
shown in reference [19], which does not take the constraint of
virtual link propagation into consideration. The CAN-A
algorithm sacrifices partial VNR acceptance ratio performance
for improving the performance of average virtual link
propagation delay.
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Fig. 14. Revenue / Cost as a function of VNRs Arrival Rate
5) Revenue / Cost: Fig. 14 illustrates the revenue / cost as a

function of VNRs arrival rate. The parameters in expression (9)
and (10), such as α and β, are set to be 1. The revenue / cost
metric is used to evaluate the resource efficiency of different
embedding algorithms. Derived from the Fig. 14, the revenue /
cost of all selected algorithms decrease with the number of
VNRs increasing. The slope of CAN-A is larger than the
remaining heuristics. It is also obvious that the efficiency of the
heuristics is around or lower than 50%. With respect to the
optimal CAN-A algorithm, it has a good efficiency. These
revenue / cost ratios are all higher than 60%. Particularly, the
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CAN-A-CLBF outperforms among the four sub-algorithms.
The revenue/cost of CAN-A-CLBF is over 85% when the
number of VNRs in a timetable is no more than 5.

6) Execution Time: An important metric for evaluating VNE
algorithms is the time that is required to embed the proposed
VNRs in a timetable. This metric is known as so called
execution time [6]. In this paper, the execution time as a
function of the VNRs arrival rate is depicted in Fig. 15.
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Fig. 15. Execution Time of Selected Algorithms as a function of
VNRs Arrival Rate

To make the execution time of VNE algorithm convincing
and worthy illustrated, several items must be set same in
advance: i. all algorithms must run on the same computer; ii. all
algorithms must run by using the same platform (e.g.
‘Simulation Platform for Scotfield Cao’ in this paper); iii. the
time to embed proposed VNRs must depend on the physical
characteristics (e.g. CPU) of the computer and the nature of the
VNE algorithm; iv. the same LP solver (GLPK in this paper)
and same LP solving method (i.e. branch and bound method)
must be adopted to solve CAN-A, D / R-ViNE-SP / MCF and G
/ NR-MCF.

Through illustrating the Fig. 15, two main behaviors can be
observed. One behavior is that the execution time of all
algorithms increases with the number of VNRs increasing. This
is expected as a function of increased VNRs. More VNRs to be
embedded, higher execution time. The other behavior is that
algorithms which perform linear programming operations, D /
R-ViNE-SP and G / NR-MCF, have more execution time than
the pure heuristics in general, such as G / NR-SP. In addition,
some other VNE algorithms, i.e. D / R-ViNE-MCF, perform
two linear programming operations. Therefore, D /
R-ViNE-MCF has higher execution time than one linear
programming algorithm, e.g. D / R-ViNE-SP, G / NR-MCF. To
CAN-A, candidate substrate nodes and paths are selected ahead.
Therefore, the number of binary variables decreases a lot. The
following ILP model is able to be solved in reasonable time,
with regard to each objective function. Constraints of node
capacity, link bandwidth and the virtual link propagation delay
are considered simultaneously. Due to the restricted ILP model
[26], programming and concrete network scenario, the
execution time of CAN-A is able to be controlled within the
range of heuristic algorithms that perform one or two linear
programming operations.

VI. CONCLUSION AND FUTURE WORK

This paper presents an optimal VNE mapping algorithm
CAN-A with less computational complexity. The CAN-A
algorithm can significantly reduce the algorithm complexity by
constructing candidate substrate node and path subsets which
are much smaller than the full sets, before performing the
integer linear programming based mapping.

Virtual node location and virtual link propagation delay are
formulated as node and link constraints in CAN-A algorithm.
Previous VNE algorithms just embed proposed VNRs with
constraints of node capacity and link bandwidth. Introducing
the constraint of virtual link propagation delay in CAN-A is
able to ensure the virtual link propagation delay within the
required value. Four different objective functions are proposed
in the CAN-A algorithm, thus forming four different
sub-algorithms: the CF which aims to minimize the cost of the
substrate network per VNR; the LDF that fights for the
minimization of the total virtual link propagation delay of
mapped VNs; the CLBF which aims to minimize the cost of the
substrate network and tries to achieve the load balancing of the
substrate network; the CLDF that has the goal of minimizing
the cost per VNR and ensuring the minimization of virtual link
propagation delay of mapped VNs.

Comprehensive simulations are conducted to assess the
CAN-A algorithm. Results vividly show that the CAN-A
algorithm outperforms typical heuristic algorithms. In terms of
average VNR acceptance ratio, the difference between the
heuristics and CAN-A is, at least, 10% (Fig. 8). The node
utilization of CAN-A is higher than the heuristics because
CAN-A is able to accommodate more proposed VNRs than the
heuristics (Fig. 9). With respect to the average virtual link
propagation delay of each given VNR, CAN-A outperforms the
best-behaved heuristic (Fig. 13). All possible mapping
assignments are considered in CAN-A. Therefore, the optimal
mapping with the lowest average virtual link propagation delay,
is able to be achieved by the CAN-A algorithm.

We identify the following directions for future study. With
respect to the time convergence and algorithm execution time,
path generation (column generation) [20][21] will be attempted
in the CAN-A algorithm. The link propagation delay of each
substrate link, set to be a time unit in this paper, can vary
according to the Euclidean Distance between two end nodes.
As to the virtual link propagation delay requirement, we only
investigate how to optimize the average virtual link
propagation delay of each virtual link in the given VNR. We are
going to further optimize the total link propagation delay for
some particular network topologies (e.g. ring topology, star
topology). In addition, we intend to study the VNE problem in a
real testbed environment and evaluate our CAN-A through a
prototype implementation. Finally, it is worthwhile to extend
the CAN-A algorithm to solve wireless virtual network
embedding (WVNE) problem[44][45][46].

APPENDIX

VNE-MIP
This part presents the mixed integer programming (MIP)

formulation of VNE-MIP, a modified version of [14], for
solving the VNE problem. Two kinds of variables are
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defined. i
mnf is the allocated amount of flow on the substrate

link mn for the i th virtual link. xMm is the binary variable which
has the value “1” when virtual node M is mapped onto substrate
node m.
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