Content Placement in Cache-Enabled Sub-6 GHz and Millimeter-Wave Multi-Antenna Dense Small Cell Networks

Journal article


Zhu, Y., Zheng, G., Wang, L., Wong, K-K. and Zhao, L. (2018). Content Placement in Cache-Enabled Sub-6 GHz and Millimeter-Wave Multi-Antenna Dense Small Cell Networks. IEEE Transactions on Wireless Communications. 17 (5), pp. 2843-2856.
AuthorsZhu, Y., Zheng, G., Wang, L., Wong, K-K. and Zhao, L.
Abstract

This paper studies the performance of cacheenabled dense small cell networks consisting of multi-antenna
sub-6 GHz and millimeter-wave (mm-wave) base stations. Different from the existing works which only consider a single antenna at each base station, the optimal content placement is unknown when the base stations have multiple antennas. We first derive the successful content delivery probability by accounting for the key channel features at sub-6 GHz and mm-wave frequencies. The maximization of the successful content delivery probability is a challenging problem. To tackle it, we first propose a constrained
cross-entropy algorithm which achieves the near-optimal solution with moderate complexity. We then develop another simple yet effective heuristic probabilistic content placement scheme, termed two-stair algorithm, which strikes a balance between caching the most popular contents and achieving content diversity. Numerical results demonstrate the superior performance of the constrained cross-entropy method and that the two-stair algorithm yields significantly better performance than only caching the most popular contents. The comparisons between the sub-6 GHz and
mm-wave systems reveal an interesting tradeoff between caching capacity and density for the mm-wave system to achieve similar performance as the sub-6 GHz system.

Year2018
JournalIEEE Transactions on Wireless Communications
Journal citation17 (5), pp. 2843-2856
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
ISSN1536-1276
Digital Object Identifier (DOI)doi:10.1109/twc.2018.2794368
Publication dates
PrintMay 2018
Publication process dates
Accepted09 Jan 2018
Deposited14 May 2020
File
License
CC BY 3.0
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/89587

  • 0
    total views
  • 3
    total downloads
  • 0
    views this month
  • 2
    downloads this month

Related outputs

Incomplete Information based Collaborative Computing in Emergency Communication Networks
Wang, Q, Zhu, Y and Wang, X (2020). Incomplete Information based Collaborative Computing in Emergency Communication Networks. IEEE Communications Letters.
Performance Analysis of Cache-Enabled Millimeter Wave Small Cell Networks
Zhu, Y., Zheng, G., Wong, K-K., Jin, S. and Lambotharan, S. (2018). Performance Analysis of Cache-Enabled Millimeter Wave Small Cell Networks. IEEE Transactions on Vehicular Technology. 67 (7), pp. 6695-6699.
A Efficient Mapping Algorithm With Novel Node-Ranking Approach for Embedding Virtual Networks
Cao, H, Zhu, Y, Yang, L and Zheng, G (2017). A Efficient Mapping Algorithm With Novel Node-Ranking Approach for Embedding Virtual Networks. IEEE Access. 5, pp. 22054-22066.
Secure Communications in Millimeter Wave Ad Hoc Networks
Zhu, Yongxu, Wang, Lifeng, Wong, Kai-Kit and Heath, Robert W (2017). Secure Communications in Millimeter Wave Ad Hoc Networks. IEEE Transactions on Wireless Communications. 16 (5), pp. 3205-3217.
Wireless Power Transfer in Massive MIMO-Aided HetNets With User Association
Zhu, Y., Wang, L., Wong, K-K., Jin, S. and Zheng, Z. (2016). Wireless Power Transfer in Massive MIMO-Aided HetNets With User Association. IEEE Transactions on Communications. 64 (10), pp. 4181-4195.