Blockchain-Empowered Decentralized Storage in Air-to-Ground Industrial Networks

Journal article


Zhu, Y., Zheng, G. and Wong, K-K. (2019). Blockchain-Empowered Decentralized Storage in Air-to-Ground Industrial Networks. IEEE Transactions on Industrial Informatics. 15 (6), pp. 3593-3601. https://doi.org/10.1109/tii.2019.2903559
AuthorsZhu, Y., Zheng, G. and Wong, K-K.
Abstract

Blockchain has created a revolution in digital networking by using distributed storage, cryptographic algorithms, and smart contracts. Many areas are benefiting from this technology, including data integrity and security, as well as authentication and authorization. Internet of Things (IoTs) networks often suffers from such security issues, which is slowing down wide-scale adoption. In this paper, we describe the employing of blockchain technology to construct a decentralized platform for storing and trading information in the air-to-ground IoT heterogeneous network. To allow both air and ground sensors to participate in the decentralized network, we design a mutual-benefit consensus process to create uneven equilibrium distributions of resources among the participants. We use a Cournot model to optimize the active density factor set in the heterogeneous air network and then employ a Nash equilibrium to balance the number of ground sensors, which is influenced by the achievable average downlink rate between the air sensors and the ground supporters. Finally, we provide numerical results to demonstrate the beneficial properties of the proposed consensus process for air-to-ground networks and show the maximum active sensor's density utilization of air networks to achieve a high quality of service.

Year2019
JournalIEEE Transactions on Industrial Informatics
Journal citation15 (6), pp. 3593-3601
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
ISSN1551-3203
Digital Object Identifier (DOI)https://doi.org/10.1109/tii.2019.2903559
Publication dates
PrintJun 2019
Online07 Mar 2019
Publication process dates
Deposited04 Jan 2021
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/8vvwy

Download files


Accepted author manuscript
TII-18-2694.pdf
License: CC BY 4.0
File access level: Open

  • 85
    total views
  • 243
    total downloads
  • 1
    views this month
  • 2
    downloads this month

Export as

Related outputs

The role of NTN in 6G
Dagiuklas, A. and Zhu, Y. (2022). The role of NTN in 6G. https://futurenetworks.ieee.org. Virtual 19 - 21 Jul 2022 Institute of Electrical and Electronics Engineers (IEEE).
Multi-Agent Collaborative Learning for UAV Enabled Wireless Networks
Xia, W., Zhu, Y., De Simone, L., Dagiuklas, A., Wong, K-K. and Zhen, G. (2022). Multi-Agent Collaborative Learning for UAV Enabled Wireless Networks. IEEE Journal on Selected Areas in Communications. pp. 2630 - 2642. https://doi.org/10.1109/JSAC.2022.3191329
Resource Management for Intelligent Reflecting Surface Assisted THz-MIMO Network
Ren, L., Zhang, H., Zhu, Y. and Long, K. (2021). Resource Management for Intelligent Reflecting Surface Assisted THz-MIMO Network. 2021 IEEE Global Communications Conference (GLOBECOM). Madrid, Spain 07 - 11 Dec 2021 Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/globecom46510.2021.9685295
User Selection in Reconfigurable Intelligent Surface Assisted Communication Systems
Gan, Xu, Zhong, C., Zhu, Y. and Zhong, Z. (2021). User Selection in Reconfigurable Intelligent Surface Assisted Communication Systems. IEEE Communications Letters. 25 (4), pp. 1353-1357. https://doi.org/10.1109/lcomm.2020.3048782
Performance Analysis of Hybrid UAV Networks for Probabilistic Content Caching
Zhu, Y. (2020). Performance Analysis of Hybrid UAV Networks for Probabilistic Content Caching. IEEE Systems Journal. https://doi.org/10.1109/JSYST.2020.3013786
Large System Analysis of Downlink MISO-NOMA System via Regularized Zero-Forcing Precoding with Imperfect CSIT
Zhang, J., Zhu, Y., Ma, S., Li, X. and Wong, K.K. (2020). Large System Analysis of Downlink MISO-NOMA System via Regularized Zero-Forcing Precoding with Imperfect CSIT. IEEE Communications Letters. 24 (11), pp. 2454-2458. https://doi.org/10.1109/lcomm.2020.3010422
Programmable Metasurface Based Multicast Systems: Design and Analysis
Zhu, Y (2020). Programmable Metasurface Based Multicast Systems: Design and Analysis. IEEE Journal on Selected Areas in Communications. https://doi.org/10.1109/JSAC.2020.3000809
Stochastic Geometry Analysis of Large Intelligent Surface-Assisted Millimeter Wave Networks
Zhu, Y (2020). Stochastic Geometry Analysis of Large Intelligent Surface-Assisted Millimeter Wave Networks. IEEE Journal on Selected Areas in Communications. https://doi.org/10.1109/JSAC.2020.3000806
Spectrum and Energy Efficiency in Dynamic UAV-Powered Millimeter Wave Networks
Zhu, Y and Tasos, D (2020). Spectrum and Energy Efficiency in Dynamic UAV-Powered Millimeter Wave Networks. IEEE Communications Letters. https://doi.org/10.1109/LCOMM.2020.3001357
Incomplete Information based Collaborative Computing in Emergency Communication Networks
Wang, Q, Zhu, Y and Wang, X (2020). Incomplete Information based Collaborative Computing in Emergency Communication Networks. IEEE Communications Letters. https://doi.org/10.1109/LCOMM.2020.2995501
Achievable Rate and Capacity Analysis for Ambient Backscatter Communications
Qian, J, Zhu, Y, He, C, Gao, F and Jin, S (2019). Achievable Rate and Capacity Analysis for Ambient Backscatter Communications. IEEE Transactions on Communications. 67 (9), pp. 6299-6310. https://doi.org/10.1109/tcomm.2019.2918525
On the Uplink Achievable Rate of Massive MIMO System with Low-Resolution ADC and RF Impairments
Xu, L, Lu, X, Jin, S, Gao, F and Zhu, Y (2019). On the Uplink Achievable Rate of Massive MIMO System with Low-Resolution ADC and RF Impairments. IEEE Communications Letters. 23 (3), pp. 502-505. https://doi.org/10.1109/lcomm.2019.2895823
Deep Learning Empowered Task Offloading for Mobile Edge Computing in Urban Informatics
Zhang, K, Zhu, Y, Leng, S, He, Y, Maharjan, S and Zhang, Y (2019). Deep Learning Empowered Task Offloading for Mobile Edge Computing in Urban Informatics. IEEE Internet of Things Journal. 6 (5), pp. 7635-7647. https://doi.org/10.1109/jiot.2019.2903191
A Deep Learning Framework for Optimization of MISO Downlink Beamforming
Xia, W, Zheng, G, Zhu, Y, Zhang, J, Wang, J and Petropulu, AP (2019). A Deep Learning Framework for Optimization of MISO Downlink Beamforming. IEEE Transactions on Communications. 68 (3), pp. 1866 - 1880. https://doi.org/10.1109/TCOMM.2019.2960361
Secrecy Rate Analysis of UAV-Enabled mmWave Networks Using Matérn Hardcore Point Processes
Zhu, Y, Zheng, G and Fitch, M (2018). Secrecy Rate Analysis of UAV-Enabled mmWave Networks Using Matérn Hardcore Point Processes. IEEE Journal on Selected Areas in Communications. 36 (7), pp. 1397-1409. https://doi.org/10.1109/jsac.2018.2825158
Content Placement in Cache-Enabled Sub-6 GHz and Millimeter-Wave Multi-Antenna Dense Small Cell Networks
Zhu, Y., Zheng, G., Wang, L., Wong, K-K. and Zhao, L. (2018). Content Placement in Cache-Enabled Sub-6 GHz and Millimeter-Wave Multi-Antenna Dense Small Cell Networks. IEEE Transactions on Wireless Communications. 17 (5), pp. 2843-2856. https://doi.org/10.1109/twc.2018.2794368
A Novel Optimal Mapping Algorithm With Less Computational Complexity for Virtual Network Embedding
Cao, H, Zhu, Y, Zheng, G and Yang, L (2018). A Novel Optimal Mapping Algorithm With Less Computational Complexity for Virtual Network Embedding. IEEE Transactions on Network and Service Management. 15 (1), pp. 356-371. https://doi.org/10.1109/tnsm.2017.2778106
Performance Analysis of Cache-Enabled Millimeter Wave Small Cell Networks
Zhu, Y., Zheng, G., Wong, K-K., Jin, S. and Lambotharan, S. (2018). Performance Analysis of Cache-Enabled Millimeter Wave Small Cell Networks. IEEE Transactions on Vehicular Technology. 67 (7), pp. 6695-6699. https://doi.org/10.1109/tvt.2018.2797047
A Efficient Mapping Algorithm With Novel Node-Ranking Approach for Embedding Virtual Networks
Cao, H, Zhu, Y, Yang, L and Zheng, G (2017). A Efficient Mapping Algorithm With Novel Node-Ranking Approach for Embedding Virtual Networks. IEEE Access. 5, pp. 22054-22066. https://doi.org/10.1109/access.2017.2761840
Secure Communications in Millimeter Wave Ad Hoc Networks
Zhu, Y., Wang, L., Wong, K-K. and Heath, R.W. (2017). Secure Communications in Millimeter Wave Ad Hoc Networks. IEEE Transactions on Wireless Communications. 16 (5), pp. 3205-3217. https://doi.org/10.1109/twc.2017.2676087
Wireless Power Transfer in Massive MIMO-Aided HetNets With User Association
Zhu, Y., Wang, L., Wong, K-K., Jin, S. and Zheng, Z. (2016). Wireless Power Transfer in Massive MIMO-Aided HetNets With User Association. IEEE Transactions on Communications. 64 (10), pp. 4181-4195. https://doi.org/10.1109/tcomm.2016.2594794
Geometric Power Control for Time-Switching Energy-Harvesting Two-User Interference Channel
Zhu, Yongxu, Wong, Kai-Kit, Zhang, Yangyang and Masouros, Christos (2016). Geometric Power Control for Time-Switching Energy-Harvesting Two-User Interference Channel. IEEE Transactions on Vehicular Technology. 65 (12), pp. 9759-9772. https://doi.org/10.1109/tvt.2016.2520565