Determining the UK’s potential for heat recovery from wastewater using steady state and dynamic modelling - preliminary results

Conference paper


Ali, S. and Gillich, A. (2018). Determining the UK’s potential for heat recovery from wastewater using steady state and dynamic modelling - preliminary results. 2nd Global Conference on Energy and Sustainable Development, GCESD2018. Edinburgh 18 - 20 Dec 2018 WEENTECH. doi:10.32438/WPE.58181
AuthorsAli, S. and Gillich, A.
TypeConference paper
Abstract

By 2050, UK plans to create ‘low carbon society’. To meet this ambitious target, UK’s heating sector must be completely decarbonized. The identification and deployment of low carbon heating sources is thus an urgent policy and research priority. Recovering heat from sewage wastewater is relatively new and attractive option as it can help UK move towards its climate change targets while decarbonising the heating sector & reducing the reliance on fossil fuels. In the domestic context, wastewater is normally discharged at higher temperature than ambient (a carrier of heat/ thermal energy) losses its energy to (ground) environment before it reaches to WWTP. Recovering this heat from wastewater could be a considerable source of energy, revenue and is environmental friendly as it results in the reduction of GHG emissions, resource conservation and in increase share of renewable energy. In last decade, many cities around the world have successfully implemented wastewater thermal energy recovery but UK is lagging behind. Pilot project such as in Scotland is leading the way, but further research is needed to build the evidence base and replicate the concept elsewhere in UK. The Home Energy 4 Tomorrow (HE4T) project at London South Bank University (LSBU) was created to address this evidence gap. The project objectives include sizing the heat potential recoverable from wastewater at designated sites. The current paper forms part of the HE4T project and the second in series of output on wastewater heat recovery in UK. In this paper we present some initially measured data, variations in wastewater temperature and flow, steady state and dynamic model results wastewater temperature and the potential heat recovery of the designated site. Early results, their limitations and possible routes to address these limitations are discussed along with policy implications for UK heat strategy.

Year2018
PublisherWEENTECH
ISSN2059-2353
Digital Object Identifier (DOI)doi:10.32438/WPE.58181
Publisher's version
Publication dates
Print01 Mar 2019
Publication process dates
Accepted19 Oct 2018
Deposited29 Nov 2019
Book titleWEENTECH Proceedings in Energy
Web address (URL) of conference proceedingshttp://weentechpublishers.com/view.aspx?jid=b11cdf1e-6992-4283-9654-d606014ba4d9
Permalink -

https://openresearch.lsbu.ac.uk/item/889vx

  • 6
    total views
  • 0
    total downloads
  • 4
    views this month
  • 0
    downloads this month

Related outputs

Modelling development and analysis on the Balanced Energy Networks (BEN) in London
Song, WH, Wang, Y, Gillich, A, Ford, A and Hewitt, M (2018). Modelling development and analysis on the Balanced Energy Networks (BEN) in London. Applied Energy. 233/4, pp. 114-125.
Limits and uncertainty for energy efficiency in the UK housing stock
Gillich, A., Mahmoudi Saber, E. and Mohareb, E. (2019). Limits and uncertainty for energy efficiency in the UK housing stock. Energy Policy. 133.
Achieving Sustainability in the UK Construction by Reducing Waste Generation
Ali, SF, Ali, A and Bayyati, A (2018). Achieving Sustainability in the UK Construction by Reducing Waste Generation. PSYCON3: Psycon - 'Psychology & Sustainable Construction’: Searching the gap between psychology and construction for a sustainable built environment. Wolverhampton, UK 19 - 20 Dec 2018
Overcoming Practical Challenges and Implementing Low-Carbon Heat in the UK: Lessons from the Balanced Energy Network (BEN) at LSBU
Arif, M, Gillich, A, Ford, A and Wang, Y (2018). Overcoming Practical Challenges and Implementing Low-Carbon Heat in the UK: Lessons from the Balanced Energy Network (BEN) at LSBU. CIBSE Technical Symposium. London 12 - 13 Apr 2018
The Theoretical versus Practical Potential of Existing and Emerging Wastewater Heat Recovery Technologies
Ali, S. and Gillich, A. (2018). The Theoretical versus Practical Potential of Existing and Emerging Wastewater Heat Recovery Technologies. Energy Systems Conference 201. London, UK 19 - 20 Jun 2018
A smarter way to electrify heat – The Balanced Energy Network approach to demand side response in the UK
Gillich, A (2017). A smarter way to electrify heat – The Balanced Energy Network approach to demand side response in the UK. European Council for an Energy Efficient Economy (ECEEE) Summer Study. Hyeres, France 29 May - 03 Jun 2017 London South Bank University.
Why Education and User Feedback Won’t Close the Performance Gap for University Accommodation
Gillich, A, Sunikka-Blank, M and Ford, A (2015). Why Education and User Feedback Won’t Close the Performance Gap for University Accommodation. CIBSE Technical Symposium. London 16 - 17 Apr 2015 London South Bank University.
Designing an ‘optimal’ domestic retrofit programme
Gillich, A, Sunikka-Blank, M and Ford, A (2017). Designing an ‘optimal’ domestic retrofit programme. Building Research & Information.
Lessons for the UK Green Deal from the US BBNP
Gillich, A (2016). Lessons for the UK Green Deal from the US BBNP. Building Research & Information. 45 (4), pp. 384-395.