Greenhouse effect reduction by recovering energy from waste landfills in Pakistan

Journal article


Zuberi, MJS and Ali, SF (2015). Greenhouse effect reduction by recovering energy from waste landfills in Pakistan. Renewable and Sustainable Energy Reviews. 44, pp. 117-131. https://doi.org/10.1016/j.rser.2014.12.028
AuthorsZuberi, MJS and Ali, SF
Abstract

© 2014 Elsevier Ltd. All rights reserved. Landfills all around the world are one of the major sources that contribute towards global warming and climate change. Although landfilling should be prioritized last in the waste management hierarchy due to highest greenhouse gas emissions as compared to other waste management systems it is still very common around the world. In this study, methane emissions are estimated by applying First Order Decay model to landfills in Pakistan over the latest data available by Pakistan Environmental Protection Agency. Results demonstrate that nearly 14.18 Gg of methane is emitted from the landfills in Pakistan each year. By combusting this methane in the form of biogas collected from the landfills as a waste management scheme we can reduce greenhouse effect up to ∼88%. Same percentage is observed when we apply the similar analysis over the potentially improved practice. Also, Pakistan is facing severe economic crises due to continuous increasing gap between energy demand and supply. Demand is increasing exponentially while supply is observed to remain constant over the last few years due to frozen capacity in spite of having significant renewable/alternate energy resources. Current electricity shortfall has reached up to 6000 MW. Present operational landfills in Pakistan can only contribute up to ∼0.1% to cater the total deficit which does not make any significant difference but if 75% of the total waste generated today is collected and 50% of it landfilled then Pakistan has the potential to produce ∼83.17 MW of power that can contribute up to 1.4% to overcome the current power shortage. The outcomes of this paper may also be applicable to other developing countries having similar resources.

Year2015
JournalRenewable and Sustainable Energy Reviews
Journal citation44, pp. 117-131
PublisherElsevier BV
ISSN1364-0321
Digital Object Identifier (DOI)https://doi.org/10.1016/j.rser.2014.12.028
Publication dates
Print02 Jan 2015
Publication process dates
Accepted12 Dec 2014
Deposited27 Nov 2020
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/8v71w

Download files


Accepted author manuscript
Greenhouse effect reduction.pdf
License: CC BY-NC-ND 4.0
File access level: Open

  • 153
    total views
  • 854
    total downloads
  • 1
    views this month
  • 5
    downloads this month

Export as

Related outputs

A review on the potential use of flammable gases from sewage systems as a source of energy
Ghaffari, M., Paurine, A., Ali, S. and Mavroulidou, M. A review on the potential use of flammable gases from sewage systems as a source of energy . 17th International Conference on Environmental Science and Technology CEST2021. Athens, Greece 01 - 04 Sep 2021 Springer.
Opportunities to decarbonize heat in the UK using Urban Wastewater Heat Recovery
Ali, S. and Gillich, A. (2021). Opportunities to decarbonize heat in the UK using Urban Wastewater Heat Recovery. Building Services Engineering Research and Technology. https://doi.org/10.1177/01436244211034739
Remedial Adaptations in Building Services to Reduce COVID-19 Transmission
Ali, S. and Waters, J. (2021). Remedial Adaptations in Building Services to Reduce COVID-19 Transmission. Virtual CIBSE Technical Symposium 2021, 13 - 14 July 2021 CIBSE.. Virtual 13 - 14 Jul 2021 CIBSE.
The potential for heat recovery from urban wastewater.
Ali, S. and Gillich, A. (2020). The potential for heat recovery from urban wastewater. CIBSE ASHRAE Technical Symposium 2020. On line 14 - 14 Sep 2020 CIBSE.
Determining the UK’s potential for heat recovery from wastewater using steady state and dynamic modelling - preliminary results
Ali, S. and Gillich, A. (2018). Determining the UK’s potential for heat recovery from wastewater using steady state and dynamic modelling - preliminary results. 2nd Global Conference on Energy and Sustainable Development, GCESD2018. Edinburgh 18 - 20 Dec 2018 WEENTECH. https://doi.org/10.32438/WPE.58181
The Theoretical versus Practical Potential of Existing and Emerging Wastewater Heat Recovery Technologies
Ali, S. and Gillich, A. (2018). The Theoretical versus Practical Potential of Existing and Emerging Wastewater Heat Recovery Technologies. Energy Systems Conference 201. London, UK 19 - 20 Jun 2018
Experimental Study of Two-Phase Air–Water Flow in Large-Diameter Vertical Pipes
Ali, S. and Yeung, H. (2014). Experimental Study of Two-Phase Air–Water Flow in Large-Diameter Vertical Pipes. Chemical Engineering Communications. 202 (6), pp. 823-842. https://doi.org/10.1080/00986445.2013.879058
Two Phase Flow Patterns in Large Diameter Vertical Pipes
Ali, S. and Yeung, H. (2013). Two Phase Flow Patterns in Large Diameter Vertical Pipes. Asia Pacific Journal of Chemical Engineering. 9 (1), pp. 105-116. https://doi.org/10.1002/apj.1750
Performance Assessment of Void Fraction Correlations in Large Diameter Vertical Pipe Up Flow
Ali, S. and Yeung, H. (2008). Performance Assessment of Void Fraction Correlations in Large Diameter Vertical Pipe Up Flow. 11th International Conference on Multiphase Flow in Industrial Plant. Palermo, Italy 07 - 10 Sep 2008 MFIP.
Hydrodynamic Flow Behaviour in Large Diameter Vertical Riser: Experimental and Simulation Studies
Ali, S. and Yeung, H. (2008). Hydrodynamic Flow Behaviour in Large Diameter Vertical Riser: Experimental and Simulation Studies. 11th International Conference on Multiphase Flow in Industrial Plant. Palermo, Italy 07 - 10 Sep 2008 MFIP.
Effect of upstream conditions on the two phase flow in the large diameter vertical pipe
Ali, S. and Yeung, H. (2008). Effect of upstream conditions on the two phase flow in the large diameter vertical pipe. 6th North American BHRG Conference on Multiphase Technology. Banff, Canada 04 - 06 Jun 2008 BHR Group.