Food mechanical properties and dietary ecology

Journal article


Berthaume, M. (2016). Food mechanical properties and dietary ecology. Americal Journal of Physical Anthropology. 159, pp. 79-104. https://doi.org/10.1002/ajpa.22903
AuthorsBerthaume, M.
Abstract

Interdisciplinary research has benefitted the fields of anthropology and engineering for decades: a classic example being the application of material science to the field of feeding biomechanics. However, after decades of research, discordances have developed in how mechanical properties are defined, measured, calculated, and used due to disharmonies between and within fields. This is highlighted by “toughness,” or energy release rate, the comparison of incomparable tests (i.e., the scissors and wedge tests), and the comparison of incomparable metrics (i.e., the stress and displacement‐limited indices). Furthermore, while material scientists report on a myriad of mechanical properties, it is common for feeding biomechanics studies to report on just one (energy release rate) or two (energy release rate and Young's modulus), which may or may not be the most appropriate for understanding feeding mechanics. Here, I review portions of materials science important to feeding biomechanists, discussing some of the basic assumptions, tests, and measurements. Next, I provide an overview of what is mechanically important during feeding, and discuss the application of mechanical property tests to feeding biomechanics. I also explain how 1) toughness measures gathered with the scissors, wedge, razor, and/or punch and die tests on non‐linearly elastic brittle materials are not mechanical properties, 2) scissors and wedge tests are not comparable and 3) the stress and displacement‐limited indices are not comparable. Finally, I discuss what data gathered thus far can be best used for, and discuss the future of the field, urging researchers to challenge underlying assumptions in currently used methods to gain a better understanding between primate masticatory morphology and diet.

KeywordsDiet mechanical properties; toughness; Young’s modulus; displacement limited index; stress limited index
Year2016
JournalAmerical Journal of Physical Anthropology
Journal citation159, pp. 79-104
PublisherWiley
ISSN0002-9483
Digital Object Identifier (DOI)https://doi.org/10.1002/ajpa.22903
Publication dates
Print25 Jan 2016
Publication process dates
Submitted21 Oct 2015
Deposited14 Nov 2019
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/8878w

Download files

Accepted author manuscript
Berthaume-Food mechancial properties and dietary ecology-2016.pdf
License: CC BY-NC 4.0
File access level: Open

  • 20
    total views
  • 12
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

The landscape of tooth shape: Over 20 years of dental topography in primates.
Berthaume, M., Lazzari, Vincent and Guy, Franck (2020). The landscape of tooth shape: Over 20 years of dental topography in primates. Evolutionary anthropology. https://doi.org/10.1002/evan.21856
Fabella prevalence rate increases over 150 years, and rates of other sesamoid bones remain constant: a systematic review
Berthaume, M., Di Federico, E. and Bill, A. (2019). Fabella prevalence rate increases over 150 years, and rates of other sesamoid bones remain constant: a systematic review. Journal of Anatomy. 235, pp. 67-79. https://doi.org/10.1111/joa.12994
Effects of cropping, smoothing, triangle count, and mesh resolution on 6 dental topographic metrics
Berthaume, M., Winchester, J. and Kupczik, K (2019). Effects of cropping, smoothing, triangle count, and mesh resolution on 6 dental topographic metrics. PLoS ONE. 14 (5), p. e0216229. https://doi.org/10.1371/journal.pone.0216229
Ambient occlusion and PCV (portion de ciel visible): A new dental topographic metric and proxy of morphological wear resistance
Berthaume, M., Winchester, J. and Kupczik, K. (2019). Ambient occlusion and PCV (portion de ciel visible): A new dental topographic metric and proxy of morphological wear resistance. PLoS ONE. 14 (5), p. e0215436. https://doi.org/10.1371/journal.pone.0215436
Human biological variation in sesamoid bone prevalence: the curious case of the fabella
Berthaume, M. and Bull, A.M.J. (2019). Human biological variation in sesamoid bone prevalence: the curious case of the fabella. Journal of Anatomy. https://doi.org/10.1111/joa.13091
Dental topography and the diet of Homo naledi
Berthaume, M., Delezene, L. and Kupczik, K. (2018). Dental topography and the diet of Homo naledi. Journal of Human Evolution. 118, pp. 14-26. https://doi.org/10.1016/j.jhevol.2018.02.006
Extant ape dental topography and its implications for reconstructing the emergence of early Homo
Berthaume, M. and Schroer, K. (2017). Extant ape dental topography and its implications for reconstructing the emergence of early Homo. Journal of Human Evolution. 112, pp. 15-29. https://doi.org/10.1016/j.jhevol.2017.09.001
Functional and evolutionary consequences of cranial fenestration in birds
Gussekloo, S., Berthaume, M., Pulaski, D., Westbroek, I., Waarsing, J., Heinen, R., Grosse, I. and Dumont, E. (2017). Functional and evolutionary consequences of cranial fenestration in birds. Evolution. 71 (5), pp. 1327-1338. https://doi.org/10.1111/evo.13210
Skeletal Immaturity, Rostral Sparing, and Disparate Hip Morphologies as Biomechanical Causes for Legg-Calve-Perthes’ Disease
Berthaume, M., Perry, D.C., Dobson, C., Witzel, U., Clarke, N.M. and Fagan, M. (2016). Skeletal Immaturity, Rostral Sparing, and Disparate Hip Morphologies as Biomechanical Causes for Legg-Calve-Perthes’ Disease . Clinical Anatomy. https://doi.org/10.1002/ca.22690
On the relationship between tooth shape and masticatory efficiency: a finite element study
Berthaume, M. (2016). On the relationship between tooth shape and masticatory efficiency: a finite element study. The Anatomical Record. 299 (5), pp. 679-687. https://doi.org/10.1002/ar.23328
What did Hadropithecus eat, and why should paleoanthropologists care?
Godfrey, L., Crowley, B., Muldoon, K., Kelley, E., King, S., Best, A. and Berthaume, M. (2016). What did Hadropithecus eat, and why should paleoanthropologists care? American Journal of Primatology. 78 (10), pp. 1098-1112. https://doi.org/10.1002/ajp.22506
Mechanical evidence that Australopithecus sediba was limited in its ability to eat hard foods
Ledogar, J., Smith, A., Benazzi, S., Weber, G., Spencer, M., Carlson, K., McNulty, K., Dechow, P., Grosse, I., Ross, C., Richmond, B., Wright, B., Wang, Q., Byron, C., Carlson, K., de Ruiter, D., Berger, L., Tamvada, K., Pryor, L., Berthaume, M. and Strait, D. (2016). Mechanical evidence that Australopithecus sediba was limited in its ability to eat hard foods. Nature Communications. 7 (1). https://doi.org/10.1038/ncomms10596
The Feeding Biomechanics and Dietary Ecology of Paranthropus boisei
Smith, A., Benazzi, S, Ledogar, J., Tamvada, K., Pryor Smith, L., Weber, G., Spencer, M., Lucas, P., Michael, S., Shekeban, A., Al-Fadhalah, K., Almusallam, A, Dechow, P., Grosse, I., Ross, C., Madden, R., Richmond, B., Wright, B., Wang, Q, Byron, C., Slice, D., Wood, S., Dzialo, C., Berthaume, M., van Casteren, A. and Strait, D. (2015). The Feeding Biomechanics and Dietary Ecology of Paranthropus boisei. The Anatomical Record. 298 (1), pp. 145-167. https://doi.org/10.1002/ar.23073
The effects of relative food item size on optimal tooth cusp sharpness during brittle food item processing
Berthaume, M., Dumont, E., Godfrey, L. and Grosse, I. (2014). The effects of relative food item size on optimal tooth cusp sharpness during brittle food item processing. Interface. 11 (101), p. 20140965. https://doi.org/10.1098/rsif.2014.0965