Human biological variation in sesamoid bone prevalence: the curious case of the fabella

Journal article


Berthaume, M. and Bull, A.M.J. (2019). Human biological variation in sesamoid bone prevalence: the curious case of the fabella. Journal of Anatomy.
AuthorsBerthaume, M. and Bull, A.M.J.
Abstract

The fabella is a sesamoid bone located in the gastrocnemius behind the lateral femoral condyle. In humans, fabellae are 3.5 times more common today than they were 100 years ago, with prevalence rates varying between and within populations. In particular, fabellae have been assumed to be more common in Asians than non‐Asians, equally common in men and women, potentially more common in older individuals, and bilateral cases (one per knee) appear to be more common than unilateral ones. The roles of genetic and environmental factors in this phenotypic variation have been hypothesized, but not rigorously investigated. Given its clinical and evolutionary significance (i.e. being associated with several knee ailments, causing medical issues on its own, interfering with medical devices, and being less common in humans than in other mammals), it is important comprehensively to understand prevalence rate variation, and the roles of genetics and environmental factors in that variation. To address these questions, we performed a meta‐analysis on data from studies published from 1875 to 2018 to investigate possible variation in sexual dimorphic (n = 22 studies, 7911 knees), ontogenetic (n = 10 studies, 4391 knees), and global (n = 65 studies, 21 626 knees) fabella prevalence rates. In addition, we investigated what proportion of cases are bilateral (n = 37 studies, 900 individuals), and among unilateral cases (n = 20 studies, 204 individuals), if fabellae are more common in the left or right knee. Our results show that, today, fabellae are 2.47–2.60% more common in men than women, and prevalence rates increase ontogenetically in old age (i.e. 70 years old), implying that fabellae can ossify early (i.e. 12 years old) or late in life. Approximately 72.94% of cases are bilateral, and among unilateral ones, fabellae are equally common in right and left knees. There is marked regional variation in fabella prevalence rates, with rates being highest in Asia, followed by Oceania, South America, Europe, Middle East, and North America, and lowest in Africa. Worldwide, an average of 36.80% of knees has ossified fabellae detectable by dissection. These results imply that, while the ability to form a fabella may be genetically controlled, the mechanisms that trigger fabella ossification may be environmentally controlled. What these environmental factors are, can only be speculated.

Year2019
JournalJournal of Anatomy
PublisherWiley
Digital Object Identifier (DOI)doi:10.1111/joa.13091
Publication dates
Online17 Oct 2019
Publication process dates
Accepted26 Aug 2019
Deposited24 Oct 2019
Publisher's version
License
CC BY 4.0
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/884y4

  • 4
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Related outputs

Fabella prevalence rate increases over 150 years, and rates of other sesamoid bones remain constant: a systematic review
Berthaume, M., Di Federico, E. and Bill, A. (2019). Fabella prevalence rate increases over 150 years, and rates of other sesamoid bones remain constant: a systematic review. Journal of Anatomy. 235, pp. 67-79.
Effects of cropping, smoothing, triangle count, and mesh resolution on 6 dental topographic metrics
Berthaume, M., Winchester, J. and Kupczik, K (2019). Effects of cropping, smoothing, triangle count, and mesh resolution on 6 dental topographic metrics. PLoS ONE. 14 (5), p. e0216229.
Ambient occlusion and PCV (portion de ciel visible): A new dental topographic metric and proxy of morphological wear resistance
Berthaume, M., Winchester, J. and Kupczik, K. (2019). Ambient occlusion and PCV (portion de ciel visible): A new dental topographic metric and proxy of morphological wear resistance. PLoS ONE. 14 (5), p. e0215436.
Functional and evolutionary consequences of cranial fenestration in birds
Gussekloo, S., Berthaume, M., Pulaski, D., Westbroek, I., Waarsing, J., Heinen, R., Grosse, I. and Dumont, E. (2017). Functional and evolutionary consequences of cranial fenestration in birds. Evolution. 71 (5), pp. 1327-1338.
Food mechanical properties and dietary ecology
Berthaume, M. (2016). Food mechanical properties and dietary ecology. Americal Journal of Physical Anthropology. 159, pp. 79-104.
What did Hadropithecus eat, and why should paleoanthropologists care?
Godfrey, L., Crowley, B., Muldoon, K., Kelley, E., King, S., Best, A. and Berthaume, M. (2016). What did Hadropithecus eat, and why should paleoanthropologists care? American Journal of Primatology. 78 (10), pp. 1098-1112.
Mechanical evidence that Australopithecus sediba was limited in its ability to eat hard foods
Ledogar, J., Smith, A., Benazzi, S., Weber, G., Spencer, M., Carlson, K., McNulty, K., Dechow, P., Grosse, I., Ross, C., Richmond, B., Wright, B., Wang, Q., Byron, C., Carlson, K., de Ruiter, D., Berger, L., Tamvada, K., Pryor, L., Berthaume, M. and Strait, D. (2016). Mechanical evidence that Australopithecus sediba was limited in its ability to eat hard foods. Nature Communications. 7 (1).
The Feeding Biomechanics and Dietary Ecology of Paranthropus boisei
Smith, A., Benazzi, S, Ledogar, J., Tamvada, K., Pryor Smith, L., Weber, G., Spencer, M., Lucas, P., Michael, S., Shekeban, A., Al-Fadhalah, K., Almusallam, A, Dechow, P., Grosse, I., Ross, C., Madden, R., Richmond, B., Wright, B., Wang, Q, Byron, C., Slice, D., Wood, S., Dzialo, C., Berthaume, M., van Casteren, A. and Strait, D. (2015). The Feeding Biomechanics and Dietary Ecology of Paranthropus boisei. The Anatomical Record. 298 (1), pp. 145-167.
The effects of relative food item size on optimal tooth cusp sharpness during brittle food item processing
Berthaume, M., Dumont, E., Godfrey, L. and Grosse, I. (2014). The effects of relative food item size on optimal tooth cusp sharpness during brittle food item processing. Interface. 11 (101), p. 20140965.