Case Studies: Effects of Beef, Whey and Carbohydrate Supplementation in Female Master Triathletes

Journal article


Mehta, K, Seijo, M, Larumbe-Zabala, E, Ashrafi, N, Christides, T, Karsten, B, Nielsen, BV and Naclerio, F (2018). Case Studies: Effects of Beef, Whey and Carbohydrate Supplementation in Female Master Triathletes. Journal of Human Sport and Exercise. 14 (1), pp. 170-184.
AuthorsMehta, K, Seijo, M, Larumbe-Zabala, E, Ashrafi, N, Christides, T, Karsten, B, Nielsen, BV and Naclerio, F
Abstract

Appropriate nutritional supplementation is crucial for athletic performance, particularly for female endurance athletes as their numbers steadily increase. This report involves a set of six case studies examining the effects of ingesting a post-workout supplement containing beef, or whey or carbohydrate on iron status, blood indices, muscular thickness, peak oxygen consumption (VO2 max) and body composition in six female masters-age (> 35 years old) triathletes. Over a 10-week training period, a 20 g supplement was ingested immediately post workout or during breakfast on the non-training days. Of the six analyzed cases, two ingested protein powder from beef, two consumed whey, and two consumed maltodextrin. Data showed that concomitant with increased dietary iron ingestion, levels of the iron-storage protein ferritin increased in beef-consumers (by 56% and 74 %) and carbohydrate-consumers (by 71% and 27 %), but decreased in whey-consumers (by 55% and 36%). Contrastingly, the effect on transferrin levels was highly variable between participants in each supplementation case. The whey-consumers showed reduced RBC count (by 6%), hematocrit (by 8%) and red blood cell distribution width (by 14% and 5%). While one beef consumer showed a remarkable 34% increase in platelets, the whey and carbohydrate-consumers showed reduced platelets, but increased neutrophil:lymphocyte ratio. Vastus medialis thickness reduced in carbohydrate-consumers (by 6% and 5%), unlike the beef and whey-consumers. Females consuming beef increased iron stores and platelets, while those ingesting whey were unable to maintain specific RBC indices. Only the four athletes ingesting protein-containing supplements were able to maintain muscle thickness, thereby averting muscle loss.

Keywords1106 Human Movement And Sports Science
Year2018
JournalJournal of Human Sport and Exercise
Journal citation14 (1), pp. 170-184
PublisherUniversidad de Alicante, Facultad de Educación
ISSN1988-5202
Digital Object Identifier (DOI)doi:10.14198/jhse.2019.141.14
Publication dates
Print01 Oct 2018
Publication process dates
Deposited27 Sep 2018
Accepted21 Jun 2018
Accepted author manuscript
License
CC BY-NC-ND
Permalink -

https://openresearch.lsbu.ac.uk/item/86943

  • 4
    total views
  • 33
    total downloads
  • 2
    views this month
  • 3
    downloads this month

Related outputs

A Novel Human Neuronal Cell Model to Study Iron Accumulation in Parkinson’s Disease
Mehta, K, Ahmed, B and Farnaud, S (2019). A Novel Human Neuronal Cell Model to Study Iron Accumulation in Parkinson’s Disease. Journal of Alzheimers Disease & Parkinsonism. 9 (1), p. 461.
Measurement of 4-hydroxynonenal (4-HNE) protein adducts by ELISA
Mehta, K and Patel, V (2019). Measurement of 4-hydroxynonenal (4-HNE) protein adducts by ELISA. in: Hancock, John and Conway, Myra (ed.) Redox-Mediated Signal Transduction: Methods and Protocols, Methods in Molecular Biology, vol. 1990 Springer Science+Business Media, LLC, part of Springer Nature 2019.
Thyroid Hormone Receptor (TR): a regulator in Liver Fibrogenesis
Manka, P, Coombes, JD, Bechmann, L, Swiderska-Syn, M, Reid, D, Claridge, LC, Younis, R, Mehta, K, Briones, MA, Kitamura, N, Mi, Z, Kuo, PC, Williams, R, Eksteen, B, Diehl, AM, Gerken, G, Canbay, A, Flamant, F, Gauthier, K and Syn, WK (2016). Thyroid Hormone Receptor (TR): a regulator in Liver Fibrogenesis. Fibrogenesis. New York 01 - 02 Jan 2016 doi:https://www.doi.org/10.1055/s-0036-1597375
Iron and liver fibrosis: mechanistic and clinical aspects
Mehta, K, Farnaud, S and Sharp, P A (2019). Iron and liver fibrosis: mechanistic and clinical aspects. World Journal of Gastroenterology. 25 (5), pp. 521-538.
Betaine, in context.
Mehta, K and Patel, V (2015). Betaine, in context. in: Preedy, V (ed.) Betaine: Chemistry, Analysis, Function and Effects The Royal Society of Chemistry.
Molecular and cellular insights into iron regulation
Mehta, K (2012). Molecular and cellular insights into iron regulation. PhD Thesis University of Westminster School of Life Sciences
Molecular Effects of Alcohol on Iron Metabolism
Mehta, K, Farnaud, S and Patel, VB (2016). Molecular Effects of Alcohol on Iron Metabolism. in: Molecular Aspects of Alcohol and Nutrition: A Volume in the Molecular Nutrition Series Academic Press. pp. 355-368
Oxidative Stress in Iron-toxicity of Liver
Mehta, K (2018). Oxidative Stress in Iron-toxicity of Liver. in: Patel, V (ed.) The Liver: Oxidative stress and dietary antioxidants Elsevier. pp. 43-54
Iron Enhances Hepatic Fibrogenesis and Activates Transforming Growth Factor-β Signaling in Murine Hepatic Stellate Cells.
Mehta, K, Coombes, JD, Briones-Orta, M, Manka, PP, Williams, R, Patel, VB and Syn, W-K (2018). Iron Enhances Hepatic Fibrogenesis and Activates Transforming Growth Factor-β Signaling in Murine Hepatic Stellate Cells. American Journal of the Medical Sciences. 355 (2), pp. 183-190.
Characterisation of hepcidin response to holotransferrin treatment in CHO TRVb-1 cells
Mehta, K, Greenwell, P, Renshaw, D, Busbridge, M, Garcia, M, Farnaud, S and Patel, VB (2015). Characterisation of hepcidin response to holotransferrin treatment in CHO TRVb-1 cells. Blood Cells, Molecules, and Diseases. 55 (2), pp. 110-118.
Characterization of hepcidin response to holotransferrin in novel recombinant TfR1 HepG2 cells
Mehta, K, Busbridge, M, Renshaw, D, Evans, RW, Farnaud, S and Patel, VB (2016). Characterization of hepcidin response to holotransferrin in novel recombinant TfR1 HepG2 cells. Blood Cells, Molecules, and Diseases. 61, pp. 37-45.
HFE mRNA expression is responsive to intracellular and extracellular iron loading: short communication
Mehta, K, Farnaud, S and Patel, VB (2017). HFE mRNA expression is responsive to intracellular and extracellular iron loading: short communication. Molecular Biology Reports. 44 (5), pp. 399-403.
Erratum to: HFE mRNA expression is responsive to intracellular and extracellular iron loading: short communication
Mehta, K, Farnaud, S and Patel, VB (2017). Erratum to: HFE mRNA expression is responsive to intracellular and extracellular iron loading: short communication. Molecular Biology Reports. 44 (5), pp. 405-405.
Mucosa-associated invariant T cells link intestinal immunity with antibacterial immune defects in alcoholic liver disease
Riva, A, Patel, V, Kurioka, A, Jeffery, HC, Wright, G, Tarff, S, Shawcross, D, Ryan, JM, Evans, A, Azarian, S, Bajaj, JS, Fagan, A, Patel, V, Mehta, K, Lopez, C, Simonova, M, Katzarov, K, Hadzhiolova, T, Pavlova, S, Wendon, JA, Oo, YH, Klenerman, P, Williams, R and Chokshi, S (2017). Mucosa-associated invariant T cells link intestinal immunity with antibacterial immune defects in alcoholic liver disease. Gut. 67 (5), pp. 918-930.