Active vibration control of a horizontal flexible plate structure using intelligent proportional–integral–derivative controller tuned by fuzzy logic and artificial bee colony algorithm
Journal article
Hadi, MS, Darus, IZM, Tokhi, MO and Jamid, MF (2019). Active vibration control of a horizontal flexible plate structure using intelligent proportional–integral–derivative controller tuned by fuzzy logic and artificial bee colony algorithm. Journal of Low Frequency Noise Vibration and Active Control. https://doi.org/10.1177/1461348419852454
Authors | Hadi, MS, Darus, IZM, Tokhi, MO and Jamid, MF |
---|---|
Abstract | © The Author(s) 2019. This paper presents the development of an intelligent controller for vibration suppression of a horizontal flexible plate structure using hybrid Fuzzy–proportional–integral–derivative controller tuned by Ziegler–Nichols tuning rules and intelligent proportional–integral–derivative controller tuned by artificial bee colony algorithm. Active vibration control technique was implemented during the development of the controllers. The vibration data obtained through experimental rig was used to model the system using system identification technique based on auto-regressive with exogenous input model. Next, the developed model was used in the development of an active vibration control for vibration suppression of the horizontal flexible plate system using proportional–integral–derivative controller. Two types of controllers were proposed in this paper which are the hybrid Fuzzy–proportional–integral–derivative controller and intelligent proportional–integral–derivative controller tuned by artificial bee colony algorithm. The performances of the developed controllers were assessed and validated. Proportional–integral–derivative–artificial bee colony controller achieved the highest attenuation for first mode of vibration with 47.54 dB attenuation as compared to Fuzzy–proportional–integral–derivative controller with 32.04 dB attenuation. The experimental work was then conducted for the best controller to confirm the result achieved in the simulation work. |
Year | 2019 |
Journal | Journal of Low Frequency Noise Vibration and Active Control |
Publisher | Sage |
ISSN | 1461-3484 |
Digital Object Identifier (DOI) | https://doi.org/10.1177/1461348419852454 |
Web address (URL) | https://journals.sagepub.com/doi/10.1177/1461348419852454 |
Publication dates | |
27 May 2019 | |
Publication process dates | |
Deposited | 25 Jun 2019 |
Accepted | 27 Apr 2019 |
Publisher's version | License File Access Level Open |
https://openresearch.lsbu.ac.uk/item/86675
Download files
187
total views147
total downloads0
views this month0
downloads this month