The makewaves tsunami tests and their relevance to tsunami engineering and risk management

Conference paper


Rossetto, T., Chandler, I., Adams, K., Antonini, A., van Balen, I., Baiguera, M., Buldakov, E., McGovern, D., del Zoppo, M., Allsop, W., Roberts, S., Raby, A., Istrati, D., Nur Jannah, Z., Lopez Querol, P., Melo, J., Wuthrich, D., Barranco, I., Harris. J., Eames, I., Piggott, M., Salah, P. and Boutlon, S.J. (2024). The makewaves tsunami tests and their relevance to tsunami engineering and risk management. World Conference on Earthquake Engineering. Milan, Italy 30 Jun - 05 Jul 2024 International Association for Earthquake Engineering.
AuthorsRossetto, T., Chandler, I., Adams, K., Antonini, A., van Balen, I., Baiguera, M., Buldakov, E., McGovern, D., del Zoppo, M., Allsop, W., Roberts, S., Raby, A., Istrati, D., Nur Jannah, Z., Lopez Querol, P., Melo, J., Wuthrich, D., Barranco, I., Harris. J., Eames, I., Piggott, M., Salah, P. and Boutlon, S.J.
TypeConference paper
Abstract

MAKEWAVES is an international multi-partner collaborative project bringing together nine academic institutions and two commercial consultancies. The objective of the collaboration is to develop experimental data and associated numerical modelling on tsunami inundation and interaction with boulders, buildings, natural and engineered barriers, towards the development of new internationally accepted guidance for
structural codes and standards. Using a pneumatic tsunami simulator (TS) developed jointly by HR Wallingford and UCL the team conducted experiments between November 2022 and April 2023 within a highly instrumented 100m long flume. The TS is capable of simulating realistic trough and crest-led tsunami waves at 1:50, including traces from the The TS is capable of generating very long trough and crest-led waves, and can reproduce at 1:50 scale waves from real life events such as the Mercator trace from the 2004 Indian Ocean event and the and 2011 Tohoku tsunamis. The TS capability has been further extended to include bore-waves. The characteristics of the waves are controlled by adjusting the flow rate and total volume of water drawn in and discharged by the TS. The experimental campaign is was subdivided into discrete research areas, each aimed at furthering knowledge on how different tsunami wave characteristics affect their interaction with manmade and natural structures environments. These include tests aimed at understanding: (1) how roughness representative of coastal forests and mangroves affects tsunami inundation characteristics, (2) how tsunami interact with boulders (3) the effectiveness of offshore breakwaters as tsunami barriers (4) how structural loads and foundation scour are affected by building permeability. This paper presents an overview of the tests conducted and some of the important early observations made that are relevant to future
engineering standards and to tsunami disaster management.

Year2024
PublisherInternational Association for Earthquake Engineering
Web address (URL)https://proceedings-wcee.org/index.html
Accepted author manuscript
License
File Access Level
Open
Publication process dates
Deposited19 Jul 2024
Permalink -

https://openresearch.lsbu.ac.uk/item/97v79

Download files


Accepted author manuscript
WCEE2024-paper_MAKEWAVES.pdf
License: CC BY 4.0
File access level: Open

  • 61
    total views
  • 55
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Observations from the EEFIT-TDMRC mission to Banda Aceh, Indonesia to investigate the recovery from the 2004 Indian Ocean Tsunami
Baiguera, M., Raby, A., McGovern, D., Adams, K., Meilianda, E., Idris, Y. and Veriyanti, V. (2023). Observations from the EEFIT-TDMRC mission to Banda Aceh, Indonesia to investigate the recovery from the 2004 Indian Ocean Tsunami. SECED. Society for Earthquake and Civil Engineering Dynamics.
Large-Scale Experiments On Tsunami Inundation And Overtopping Forces At Vertical Sea Walls
McGovern, D., Allsop, W., Rossetto, T and Chandler, I (2022). Large-Scale Experiments On Tsunami Inundation And Overtopping Forces At Vertical Sea Walls. Coastal Engineering. 179, p. 104222. https://doi.org/10.1016/j.coastaleng.2022.104222
A strategy to face the impact of Covid-19 and technology disruption on higher education in the 2020-2025 lustrum
Levatti Lopez, H., Leung, S., McGovern, D. and Kraincanic, I. (2021). A strategy to face the impact of Covid-19 and technology disruption on higher education in the 2020-2025 lustrum. Teaching and Learning Conference 2021: Teaching in the Spotlight: What is the Future for HE Curricula?. Online 06 - 08 Jul 2021
Tsunami Scour and Forces at Onshore Structures
McGovern, D., Rossetto, T. and Todd, D. (2019). Tsunami Scour and Forces at Onshore Structures. Coastal Structures Conference 2019. Hannover 30 Sep 2019 - 02 Nov 2020 https://doi.org/10.18451/978-3-939230-64-9_051
Experimental observations of tsunami induced scour at onshore structures
McGovern, D, Todd, D, Rossetto, T, Whitehouse, RJS, Monaghan, J and Gomes, E (2019). Experimental observations of tsunami induced scour at onshore structures. Coastal Engineering. 152, p. 103505. https://doi.org/10.1016/j.coastaleng.2019.103505
Pneumatic Long-Wave Generation of Tsunami-Length Waveforms and their Runup
McGovern, D, Robinson, T, Chandler, ID, Allsop, W and Rossetto, T (2018). Pneumatic Long-Wave Generation of Tsunami-Length Waveforms and their Runup. Coastal Engineering. 138, pp. 80-80. https://doi.org/10.1016/j.coastaleng.2018.04.006
Tsunami Simulators in Physical Modelling – Concept to Practical Solutions
McGovern, D (2017). Tsunami Simulators in Physical Modelling – Concept to Practical Solutions. European Geophysical Union. Vienna 23 - 27 Apr 2017 London South Bank University.
Understanding wave generation in pneumatic tsunami simulators
McGovern, D (2016). Understanding wave generation in pneumatic tsunami simulators. 6th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science. Ottawa, Canada 10 - 13 May 2016 London South Bank University.
Experimental Study of the Runup of Tsunami Waves on a smooth Sloping Beach
McGovern, D (2016). Experimental Study of the Runup of Tsunami Waves on a smooth Sloping Beach. 6th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science. Ottowa, Canada 10 May - 13 Jul 2016
Experiments on Tsunami Impact with a Vertical Sea Wall
McGovern, D, Robinson, T and Rossetto, T (2016). Experiments on Tsunami Impact with a Vertical Sea Wall. 1st International Conference on Natural Hazards & Infrastructure. Chania, Greece 28 - 30 Jun 2016
Response of small sea ice floes in regular waves: A comparison of numerical and experimental results
Bai, W, Zhang, T and McGovern, D (2016). Response of small sea ice floes in regular waves: A comparison of numerical and experimental results. Ocean Engineering. 129, pp. 495-506. https://doi.org/10.1016/j.oceaneng.2016.10.045
Closure to “Time Development of Scour around a Cylinder in Simulated Tidal Currents”
McGovern, D., Ilic, S., Folkard, A.M., McLelland, S.J. and Murphy, B.J. (2015). Closure to “Time Development of Scour around a Cylinder in Simulated Tidal Currents”. Journal of Hydraulic Engineering. 141 (7). https://doi.org/10.1061/(asce)hy.1943-7900.0001023
Experimental study on kinematics of sea ice floes in regular waves
McGovern, D and Bai, W (2014). Experimental study on kinematics of sea ice floes in regular waves. Cold Regions Science and Technology. 103, pp. 15-30. https://doi.org/10.1016/j.coldregions.2014.03.004
Time Development of Scour around a Cylinder in Simulated Tidal Currents
McGovern, D, Ilic, S, Folkard, AM, McLelland, SJ and Murphy, BJ (2014). Time Development of Scour around a Cylinder in Simulated Tidal Currents. Journal of Hydraulic Engineering. 140 (6), pp. 04014014-04014014. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000857
Experimental study of wave-driven impact of sea ice floes on a circular cylinder
McGovern, D and Bai, W (2014). Experimental study of wave-driven impact of sea ice floes on a circular cylinder. Cold Regions Science and Technology. 108, pp. 36-48. https://doi.org/10.1016/j.coldregions.2014.08.008