Experimental study of wave-driven impact of sea ice floes on a circular cylinder

Journal article


McGovern, D and Bai, W (2014). Experimental study of wave-driven impact of sea ice floes on a circular cylinder. Cold Regions Science and Technology. 108, pp. 36-48. https://doi.org/10.1016/j.coldregions.2014.08.008
AuthorsMcGovern, D and Bai, W
Abstract

The impact of isolated sea ice floes with offshore structures is a significant environmental hazard for Arctic offshore operations. Most attention to date has focused on the impact of glacial icebergs, and very large drifting ice floes with offshore structures. There appears to be a lack of data in the case of isolated, wave-forced floe–structure interactions. To address this an experimental investigation was conducted to identify impact characteristics of floes of various shapes and sizes with a single circular cylinder. A wide selection of regular and irregular wave conditions were examined and the floe kinematics and impact characteristics determined. In regular waves, the results showed floe kinematic heave and surge responses was unaffected by the presence of the structure at distances of x/D ~ ≥ 10. At x/D ≤ 10 a slight increase in heave response was observed. In the same region, surge was markedly reduced regardless of whether there was an eventual impact. Drift velocity appeared to be the main control on whether the floe would impact (if drift velocity was high enough) or become trapped in the lee of the cylinder and be deflected to one side before impact. 3D analysis of impacts showed that two broad types of impact occurred; a relatively head-on impact and a more side-on impact. Head-on impacts were dominated by linear kinetic energy, while side on and secondary impacts exhibited increased rotational kinetic energy. In irregular waves, the impacts were found to occur at any point in the wave cycle, whereas the impacts in regular waves tended to occur at the point of maximum surge near the crest of the wave. The influence of λ/Lc and H/λ on impact occurrence and characteristics was investigated. While H/λ did not have a significant effect on impact occurrence, it appeared that the lower the λ the greater the chance of impact. The influence of Lc and shape in irregular waves indicated larger Lc and cross-sectional area of the floe relative to the cylinder increased impact occurrence.

Keywords0905 Civil Engineering; Meteorology & Atmospheric Sciences
Year2014
JournalCold Regions Science and Technology
Journal citation108, pp. 36-48
PublisherElsevier
ISSN0165-232X
Digital Object Identifier (DOI)https://doi.org/10.1016/j.coldregions.2014.08.008
Publication dates
Print28 Aug 2014
Publication process dates
Deposited06 Jun 2018
Accepted22 Aug 2014
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/877w9

Download files


Accepted author manuscript
  • 60
    total views
  • 188
    total downloads
  • 1
    views this month
  • 2
    downloads this month

Export as

Related outputs

Observations from the EEFIT-TDMRC mission to Banda Aceh, Indonesia to investigate the recovery from the 2004 Indian Ocean Tsunami
Baiguera, M., Raby, A., McGovern, D., Adams, K., Meilianda, E., Idris, Y. and Veriyanti, V. (2023). Observations from the EEFIT-TDMRC mission to Banda Aceh, Indonesia to investigate the recovery from the 2004 Indian Ocean Tsunami. SECED. Society for Earthquake and Civil Engineering Dynamics.
Large-Scale Experiments On Tsunami Inundation And Overtopping Forces At Vertical Sea Walls
McGovern, D., Allsop, W., Rossetto, T and Chandler, I (2022). Large-Scale Experiments On Tsunami Inundation And Overtopping Forces At Vertical Sea Walls. Coastal Engineering. 179, p. 104222. https://doi.org/10.1016/j.coastaleng.2022.104222
A strategy to face the impact of Covid-19 and technology disruption on higher education in the 2020-2025 lustrum
Levatti Lopez, H., Leung, S., McGovern, D. and Kraincanic, I. (2021). A strategy to face the impact of Covid-19 and technology disruption on higher education in the 2020-2025 lustrum. Teaching and Learning Conference 2021: Teaching in the Spotlight: What is the Future for HE Curricula?. Online 06 - 08 Jul 2021
Tsunami Scour and Forces at Onshore Structures
McGovern, D., Rossetto, T. and Todd, D. (2019). Tsunami Scour and Forces at Onshore Structures. Coastal Structures Conference 2019. Hannover 30 Sep 2019 - 02 Nov 2020 https://doi.org/10.18451/978-3-939230-64-9_051
Experimental observations of tsunami induced scour at onshore structures
McGovern, D, Todd, D, Rossetto, T, Whitehouse, RJS, Monaghan, J and Gomes, E (2019). Experimental observations of tsunami induced scour at onshore structures. Coastal Engineering. 152, p. 103505. https://doi.org/10.1016/j.coastaleng.2019.103505
Pneumatic Long-Wave Generation of Tsunami-Length Waveforms and their Runup
McGovern, D, Robinson, T, Chandler, ID, Allsop, W and Rossetto, T (2018). Pneumatic Long-Wave Generation of Tsunami-Length Waveforms and their Runup. Coastal Engineering. 138, pp. 80-80. https://doi.org/10.1016/j.coastaleng.2018.04.006
Tsunami Simulators in Physical Modelling – Concept to Practical Solutions
McGovern, D (2017). Tsunami Simulators in Physical Modelling – Concept to Practical Solutions. European Geophysical Union. Vienna 23 - 27 Apr 2017 London South Bank University.
Understanding wave generation in pneumatic tsunami simulators
McGovern, D (2016). Understanding wave generation in pneumatic tsunami simulators. 6th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science. Ottawa, Canada 10 - 13 May 2016 London South Bank University.
Experimental Study of the Runup of Tsunami Waves on a smooth Sloping Beach
McGovern, D (2016). Experimental Study of the Runup of Tsunami Waves on a smooth Sloping Beach. 6th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science. Ottowa, Canada 10 May - 13 Jul 2016
Experiments on Tsunami Impact with a Vertical Sea Wall
McGovern, D, Robinson, T and Rossetto, T (2016). Experiments on Tsunami Impact with a Vertical Sea Wall. 1st International Conference on Natural Hazards & Infrastructure. Chania, Greece 28 - 30 Jun 2016
Response of small sea ice floes in regular waves: A comparison of numerical and experimental results
Bai, W, Zhang, T and McGovern, D (2016). Response of small sea ice floes in regular waves: A comparison of numerical and experimental results. Ocean Engineering. 129, pp. 495-506. https://doi.org/10.1016/j.oceaneng.2016.10.045
Closure to “Time Development of Scour around a Cylinder in Simulated Tidal Currents”
McGovern, D., Ilic, S., Folkard, A.M., McLelland, S.J. and Murphy, B.J. (2015). Closure to “Time Development of Scour around a Cylinder in Simulated Tidal Currents”. Journal of Hydraulic Engineering. 141 (7). https://doi.org/10.1061/(asce)hy.1943-7900.0001023
Experimental study on kinematics of sea ice floes in regular waves
McGovern, D and Bai, W (2014). Experimental study on kinematics of sea ice floes in regular waves. Cold Regions Science and Technology. 103, pp. 15-30. https://doi.org/10.1016/j.coldregions.2014.03.004
Time Development of Scour around a Cylinder in Simulated Tidal Currents
McGovern, D, Ilic, S, Folkard, AM, McLelland, SJ and Murphy, BJ (2014). Time Development of Scour around a Cylinder in Simulated Tidal Currents. Journal of Hydraulic Engineering. 140 (6), pp. 04014014-04014014. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000857