Understanding wave generation in pneumatic tsunami simulators

Conference item


McGovern, D (2016). Understanding wave generation in pneumatic tsunami simulators. 6th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science. Ottawa, Canada 10 - 13 May 2016 London South Bank University.
AuthorsMcGovern, D
Abstract

Tsunami crest only (elevated) and trough led N-waves have been generated using an improved pneumatic Tsunami Simulator. The crest only wave periods range from 20s to 160s, and 20s to 240s for the trough led N-waves. The length of flume in which these waves are generated was found to have an influence on the measured wave profile at a particular location for waves with period between 40s and approximately 120s. For waves less than 40s the wave generation is not affected by reflections. For waves greater than 120s the variation in free-surface elevation along the flume at any given instant is small resulting in negligible variation in measured profile from different positions within the flume. Outlines for further investigations and improvements to the Tsunami Simulator are given, including initial developments for an active wave absorption system for the Tsunami Simulator.

Year2016
PublisherLondon South Bank University
File
License
CC BY-NC-ND 4.0
Publication process dates
Deposited05 Jul 2018
Accepted10 May 2016
Permalink -

https://openresearch.lsbu.ac.uk/item/8742x

  • 3
    total views
  • 2
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Related outputs

Experimental observations of tsunami induced scour at onshore structures
McGovern, D, Todd, D, Rossetto, T, Whitehouse, RJS, Monaghan, J and Gomes, E (2019). Experimental observations of tsunami induced scour at onshore structures. Coastal Engineering. 152, p. 103505.
Experiments on Tsunami Impact with a Vertical Sea Wall
McGovern, D, Robinson, T and Rossetto, T (2016). Experiments on Tsunami Impact with a Vertical Sea Wall. 1st International Conference on Natural Hazards & Infrastructure. Chania, Greece 28 - 30 Jun 2016
Tsunami Simulators in Physical Modelling – Concept to Practical Solutions
McGovern, D (2017). Tsunami Simulators in Physical Modelling – Concept to Practical Solutions. European Geophysical Union. Vienna 23 - 27 Apr 2017 London South Bank University.
Experimental Study of the Runup of Tsunami Waves on a smooth Sloping Beach
McGovern, D (2016). Experimental Study of the Runup of Tsunami Waves on a smooth Sloping Beach. 6th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science. Ottowa, Canada 10 May - 13 Jul 2016 London South Bank University.
Experimental study on kinematics of sea ice floes in regular waves
McGovern, D and Bai, W (2014). Experimental study on kinematics of sea ice floes in regular waves. Cold Regions Science and Technology. 103, pp. 15-30.
Time Development of Scour around a Cylinder in Simulated Tidal Currents
McGovern, D, Ilic, S, Folkard, AM, McLelland, SJ and Murphy, BJ (2014). Time Development of Scour around a Cylinder in Simulated Tidal Currents. Journal of Hydraulic Engineering. 140 (6), pp. 04014014-04014014.
Experimental study of wave-driven impact of sea ice floes on a circular cylinder
McGovern, D and Bai, W (2014). Experimental study of wave-driven impact of sea ice floes on a circular cylinder. Cold Regions Science and Technology. 108, pp. 36-48.
Response of small sea ice floes in regular waves: A comparison of numerical and experimental results
Bai, W, Zhang, T and McGovern, D (2016). Response of small sea ice floes in regular waves: A comparison of numerical and experimental results. Ocean Engineering. 129, pp. 495-506.
Pneumatic Long-Wave Generation of Tsunami-Length Waveforms and their Runup
McGovern, D, Robinson, T, Chandler, ID, Allsop, W and Rossetto, T (2018). Pneumatic Long-Wave Generation of Tsunami-Length Waveforms and their Runup. Coastal Engineering. 138, pp. 80-80.