Experimental Study of the Runup of Tsunami Waves on a smooth Sloping Beach

Conference item


McGovern, D (2016). Experimental Study of the Runup of Tsunami Waves on a smooth Sloping Beach. 6th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science. Ottowa, Canada 10 May - 13 Jul 2016 London South Bank University.
AuthorsMcGovern, D
Abstract

A series of large-scale laboratory flume experiments are performed using a pneumatic long-wave generator to simulate tsunami-length trough-led waves. The periods generated are from approximately 6.5 – 37, 40, 72 and 230 s. The runup of these waves is measured on a 1:20 sloping beach. Preliminary results from these tests are presented. The reflections of long waves is discussed. Runup of the 230 s waves is found to be lower than the waves with periods of less than 72 s and previously published data in the literature. Plots of various wave parameters against runup show the strongest positive correlations to be with the crest amplitude and the total potential energy for all wave periods presented. The shorter period data shows a reasonably good fit to available runup relationships, with the longer 40, 72 and 230 s waves showing a poorer fit, suggesting another relationship. Outlines of extensive further work is also given.

Year2016
PublisherLondon South Bank University
Accepted author manuscript
License
CC BY-NC-ND 4.0
Publication dates
Print10 May 2016
Publication process dates
Deposited05 Jul 2018
Accepted10 May 2016
Permalink -

https://openresearch.lsbu.ac.uk/item/8742v

  • 3
    total views
  • 5
    total downloads
  • 1
    views this month
  • 1
    downloads this month

Related outputs

Experimental observations of tsunami induced scour at onshore structures
McGovern, D, Todd, D, Rossetto, T, Whitehouse, RJS, Monaghan, J and Gomes, E (2019). Experimental observations of tsunami induced scour at onshore structures. Coastal Engineering. 152, p. 103505.
Experiments on Tsunami Impact with a Vertical Sea Wall
McGovern, D, Robinson, T and Rossetto, T (2016). Experiments on Tsunami Impact with a Vertical Sea Wall. 1st International Conference on Natural Hazards & Infrastructure. Chania, Greece 28 - 30 Jun 2016
Tsunami Simulators in Physical Modelling – Concept to Practical Solutions
McGovern, D (2017). Tsunami Simulators in Physical Modelling – Concept to Practical Solutions. European Geophysical Union. Vienna 23 - 27 Apr 2017 London South Bank University.
Understanding wave generation in pneumatic tsunami simulators
McGovern, D (2016). Understanding wave generation in pneumatic tsunami simulators. 6th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science. Ottawa, Canada 10 - 13 May 2016 London South Bank University.
Experimental study on kinematics of sea ice floes in regular waves
McGovern, D and Bai, W (2014). Experimental study on kinematics of sea ice floes in regular waves. Cold Regions Science and Technology. 103, pp. 15-30.
Time Development of Scour around a Cylinder in Simulated Tidal Currents
McGovern, D, Ilic, S, Folkard, AM, McLelland, SJ and Murphy, BJ (2014). Time Development of Scour around a Cylinder in Simulated Tidal Currents. Journal of Hydraulic Engineering. 140 (6), pp. 04014014-04014014.
Experimental study of wave-driven impact of sea ice floes on a circular cylinder
McGovern, D and Bai, W (2014). Experimental study of wave-driven impact of sea ice floes on a circular cylinder. Cold Regions Science and Technology. 108, pp. 36-48.
Response of small sea ice floes in regular waves: A comparison of numerical and experimental results
Bai, W, Zhang, T and McGovern, D (2016). Response of small sea ice floes in regular waves: A comparison of numerical and experimental results. Ocean Engineering. 129, pp. 495-506.
Pneumatic Long-Wave Generation of Tsunami-Length Waveforms and their Runup
McGovern, D, Robinson, T, Chandler, ID, Allsop, W and Rossetto, T (2018). Pneumatic Long-Wave Generation of Tsunami-Length Waveforms and their Runup. Coastal Engineering. 138, pp. 80-80.