Bending Performance of Timber Beam Strengthened with Passive Prestressing

Journal article


Yeoh, D., Leng, V., Jamaluddin, N., Boon, K., Jamalaldin, S., Tighnavard Balasbaneh, A. and Ghafar, N. (2023). Bending Performance of Timber Beam Strengthened with Passive Prestressing. International Journal of Sustainable Construction Engineering and Technology. 14 (3), pp. 419-428. https://doi.org/10.30880/ijscet.2023.14.03.035
AuthorsYeoh, D., Leng, V., Jamaluddin, N., Boon, K., Jamalaldin, S., Tighnavard Balasbaneh, A. and Ghafar, N.
Abstract

Prestressing technology and its application is common in concrete design and construction particularly in Malaysia and most parts of the world. However, prestress strengthening in timber is rare and not widely applied especially in Malaysia. Application of prestressing in timber has the potential to allow the use of longer span with reduced cross-sectional size and simultaneously exhibiting some level of ductility through the prestressing rod since timber material is susceptible to brittle tensile failure. This paper highlights exploratory research into the extent of bending performance enhancement in Malaysian Kempas species timber beam strengthened by way of passive prestressing. The research was conducted to investigate the change in bending strength and moment capacity of timber beam with passive prestressing rods installed at different lever arm positions, and the enhancement of moment capacity of timber beam with and without passive prestressing. Five Kempas timber specimen configurations with size of 40 mm (b) × 90 mm (d) × 900 mm (l) were prepared for four-point bending tests, and their bending behaviours were evaluated. The timber beam with passive prestressing steel rods applied at tension side bottom fibre of timber beam exhibited the greatest enhancement in bending performance and stiffness. The improvement of bending performance ranges from 1.1 to 1.5 times greater compared to the timber beam without prestressing steel rods. The improvement of stiffness in prestressed timber beam is up to 11% at service limit state and a reduced rate of stiffness degradation is prominent.

KeywordsKempas timber, passive prestressing, bending strength, stiffness, moment capacity
Year2023
JournalInternational Journal of Sustainable Construction Engineering and Technology
Journal citation14 (3), pp. 419-428
PublisherUniversiti Tun Hussein Onn Malasia
ISSN2180-3242
2600-7959
Digital Object Identifier (DOI)https://doi.org/10.30880/ijscet.2023.14.03.035
Web address (URL)https://publisher.uthm.edu.my/ojs/index.php/IJSCET/article/view/15448
Publication dates
Online21 Sep 2023
Publication process dates
Accepted12 Sep 2023
Deposited18 Jul 2024
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/9745z

Download files


Accepted author manuscript
Dr. Ali.docx
License: CC BY 4.0
File access level: Open

  • 12
    total views
  • 3
    total downloads
  • 3
    views this month
  • 0
    downloads this month

Export as

Related outputs

Integrating three pillars of sustainability for evaluating the modular construction building
Tighnavard Balasbaneh, A. and Ramadan, B.S. (2024). Integrating three pillars of sustainability for evaluating the modular construction building. Construction Innovation. https://doi.org/10.1108/CI-01-2024-0002
Life cycle assessment and economic analysis of Reusable formwork materials considering the circular economy
Tighnavard Balasbaneh, A., Sher, W. and Ibrahim, M.H.W. (2024). Life cycle assessment and economic analysis of Reusable formwork materials considering the circular economy. Ain Shams Engineering Journal. 15 (4), p. 102585. https://doi.org/10.1016/j.asej.2023.102585
Life Cycle Cost and Evaluation of Performance between Steel Formwork and Plastic Formwork in Concrete Structure Building
Zamri, I.B. and Tighnavard Balasbaneh, A. (2023). Life Cycle Cost and Evaluation of Performance between Steel Formwork and Plastic Formwork in Concrete Structure Building. Journal of Advanced Research in Applied Sciences and Engineering Technology. 34 (2), pp. 153-168. https://doi.org/https://doi.org/10.37934/araset.34.2.153168
Life Cycle Sustainability Assessment of Alternative Green Roofs – A Systematic Literature Review
Tighnavard Balasbaneh, A., Sher, W., Madun, A. and Ashour, A. (2023). Life Cycle Sustainability Assessment of Alternative Green Roofs – A Systematic Literature Review. Building and Environment. 248 (15), p. 111064. https://doi.org/10.1016/j.buildenv.2023.111064
Recommending a new building structure to alleviate environmental impact in tropical climates: increasing the use of wood in construction
Tighnavard Balasbaneh, A., Sher, W. and Yeoh, D. (2022). Recommending a new building structure to alleviate environmental impact in tropical climates: increasing the use of wood in construction. International Journal of Life Cycle Assessment (Int J LCA). 27, p. 885–901. https://doi.org/10.1007/s11367-022-02074-5
Thermal Performance of Bio-Phase Change Materials for Thermal Insulation Coefficients in Malaysian Buildings
Tighnavard Balasbaneh, A. and Tee, K.C. (2022). Thermal Performance of Bio-Phase Change Materials for Thermal Insulation Coefficients in Malaysian Buildings. Civil Engineering and Architecture. 10 (7), pp. 2933 - 2942. https://doi.org/10.13189/cea.2022.100712
Economic and environmental life cycle perspectives on two engineered wood products: Comparison of LVL and GLT construction materials
Tighnavard Balasbaneh, A., Sher, W., Yeoh, D. and Yasin, M. (2022). Economic and environmental life cycle perspectives on two engineered wood products: Comparison of LVL and GLT construction materials. Environmental Science and Pollution Research. 30, p. 26964–26981. https://doi.org/10.1007/s11356-022-24079-1
Economic and environmental life cycle assessment of alternative mass timber walls to evaluate circular economy in building: MCDM method
Tighnavard Balasbaneh, A. and Sher, W. (2022). Economic and environmental life cycle assessment of alternative mass timber walls to evaluate circular economy in building: MCDM method. Environment, Development and Sustainability. 26, p. 239–268. https://doi.org/10.1007/s10668-022-02707-7
Comparative sustainability evaluation of two engineered wood-based construction materials: Life cycle analysis of CLT versus GLT
Tighnavard Balasbaneh, A. and Sher, W. (2021). Comparative sustainability evaluation of two engineered wood-based construction materials: Life cycle analysis of CLT versus GLT. Building and Environment. 204, p. 108112. https://doi.org/10.1016/j.buildenv.2021.108112
A Comparative sustainability of Conventional and Prefabricated Prefinished Volumetric Construction (PPVC) Construction Methods
Tighnavard Balasbaneh, A., Yeoh, D. and Juki, M.I. (2021). A Comparative sustainability of Conventional and Prefabricated Prefinished Volumetric Construction (PPVC) Construction Methods. in: Environmental Footprints and Eco-design of Products and Processes Springer. pp. 179-201
Sustainability Choice of Different Hybrid Timber Structure for Low Medium Cost Single-story Residential Building: Environmental, Economic and Social Assessment
Tighnavard Balasbaneh, A., Bin Marsono, A.K. and Khaleghi, S.J. (2018). Sustainability Choice of Different Hybrid Timber Structure for Low Medium Cost Single-story Residential Building: Environmental, Economic and Social Assessment. Journal of Building Engineering. 20, p. 235–247. https://doi.org/10.1016/j.jobe.2018.07.006
Combinations of building construction material for residential building for the global warming mitigation for Malaysia
Tighnavard Balasbaneh, A. and Bin Marsono, A.K. (2015). Combinations of building construction material for residential building for the global warming mitigation for Malaysia. Construction and Building Materials. 85, pp. 100-108. https://doi.org/10.1016/j.conbuildmat.2015.03.083