A Comparative sustainability of Conventional and Prefabricated Prefinished Volumetric Construction (PPVC) Construction Methods

Book chapter


Tighnavard Balasbaneh, A., Yeoh, D. and Juki, M.I. (2021). A Comparative sustainability of Conventional and Prefabricated Prefinished Volumetric Construction (PPVC) Construction Methods. in: Environmental Footprints and Eco-design of Products and Processes Springer. pp. 179-201
AuthorsTighnavard Balasbaneh, A., Yeoh, D. and Juki, M.I.
Abstract

Lately, many governments have been significantly promoting modular building instead of conventional as a practical solution toward enhancing sustainability in the construction sector. Therefore, this research aims to compare traditional and modular building construction to find each environmental and cost difference as a criterion for comparison. This study’s life cycle sustainability assessment comprises embodied energy, greenhouse gas (GHG), and cost. The result showed that the steel modular has the lowest embodied energy and carbon emission following conventional steel construction. For traditional construction, 28% of GHG emissions are related to on-site activity, while PPVC is less than 1%. However, the development of the factory is about 11% of the total construction emission for PPVC. On the other hand, the concrete, conventional method has a lower construction cost following by concrete modular. The transportation cost of modular building is responsible for up to 13% of the total construction cost. While the conventional building has a higher worker wage by 11%, compare to modular construction. Multi-attributes decision making (MADM) using WASPAS has been applied to reveal the best construction material and method. The result showed that steel modular is the best option for
construction.

KeywordsModular construction · Conventional construction · Environmental assessment · Embodied energy · Greenhouse gas
Page range179-201
Year2021
Book titleEnvironmental Footprints and Eco-design of Products and Processes
PublisherSpringer
File
License
File Access Level
Open
Publication dates
Online22 Sep 2021
Publication process dates
Deposited10 Jul 2024
Digital Object Identifier (DOI)https://doi.org/10.1007/978-981-16-4562-4_8
Web address (URL)https://link.springer.com/chapter/10.1007/978-981-16-4562-4_8
Permalink -

https://openresearch.lsbu.ac.uk/item/9740q

Download files


File
20- IF.docx
License: CC BY 4.0
File access level: Open

  • 2
    total views
  • 3
    total downloads
  • 2
    views this month
  • 3
    downloads this month

Export as

Related outputs

Integrating three pillars of sustainability for evaluating the modular construction building
Tighnavard Balasbaneh, A. and Ramadan, B.S. (2024). Integrating three pillars of sustainability for evaluating the modular construction building. Construction Innovation. https://doi.org/10.1108/CI-01-2024-0002
Life cycle assessment and economic analysis of Reusable formwork materials considering the circular economy
Tighnavard Balasbaneh, A., Sher, W. and Ibrahim, M.H.W. (2024). Life cycle assessment and economic analysis of Reusable formwork materials considering the circular economy. Ain Shams Engineering Journal. 15 (4), p. 102585. https://doi.org/10.1016/j.asej.2023.102585
Life Cycle Cost and Evaluation of Performance between Steel Formwork and Plastic Formwork in Concrete Structure Building
Zamri, I.B. and Tighnavard Balasbaneh, A. (2023). Life Cycle Cost and Evaluation of Performance between Steel Formwork and Plastic Formwork in Concrete Structure Building. Journal of Advanced Research in Applied Sciences and Engineering Technology. 34 (2), pp. 153-168. https://doi.org/https://doi.org/10.37934/araset.34.2.153168
Life Cycle Sustainability Assessment of Alternative Green Roofs – A Systematic Literature Review
Tighnavard Balasbaneh, A., Sher, W., Madun, A. and Ashour, A. (2023). Life Cycle Sustainability Assessment of Alternative Green Roofs – A Systematic Literature Review. Building and Environment. 248 (15), p. 111064. https://doi.org/10.1016/j.buildenv.2023.111064
Recommending a new building structure to alleviate environmental impact in tropical climates: increasing the use of wood in construction
Tighnavard Balasbaneh, A., Sher, W. and Yeoh, D. (2022). Recommending a new building structure to alleviate environmental impact in tropical climates: increasing the use of wood in construction. International Journal of Life Cycle Assessment (Int J LCA). 27, p. 885–901. https://doi.org/10.1007/s11367-022-02074-5
Thermal Performance of Bio-Phase Change Materials for Thermal Insulation Coefficients in Malaysian Buildings
Tighnavard Balasbaneh, A. and Tee, K.C. (2022). Thermal Performance of Bio-Phase Change Materials for Thermal Insulation Coefficients in Malaysian Buildings. Civil Engineering and Architecture. 10 (7), pp. 2933 - 2942. https://doi.org/10.13189/cea.2022.100712
Economic and environmental life cycle perspectives on two engineered wood products: Comparison of LVL and GLT construction materials
Tighnavard Balasbaneh, A., Sher, W., Yeoh, D. and Yasin, M. (2022). Economic and environmental life cycle perspectives on two engineered wood products: Comparison of LVL and GLT construction materials. Environmental Science and Pollution Research. 30, p. 26964–26981. https://doi.org/10.1007/s11356-022-24079-1
Economic and environmental life cycle assessment of alternative mass timber walls to evaluate circular economy in building: MCDM method
Tighnavard Balasbaneh, A. and Sher, W. (2022). Economic and environmental life cycle assessment of alternative mass timber walls to evaluate circular economy in building: MCDM method. Environment, Development and Sustainability. 26, p. 239–268. https://doi.org/10.1007/s10668-022-02707-7
Comparative sustainability evaluation of two engineered wood-based construction materials: Life cycle analysis of CLT versus GLT
Tighnavard Balasbaneh, A. and Sher, W. (2021). Comparative sustainability evaluation of two engineered wood-based construction materials: Life cycle analysis of CLT versus GLT. Building and Environment. 204, p. 108112. https://doi.org/10.1016/j.buildenv.2021.108112
Sustainability Choice of Different Hybrid Timber Structure for Low Medium Cost Single-story Residential Building: Environmental, Economic and Social Assessment
Tighnavard Balasbaneh, A., Bin Marsono, A.K. and Khaleghi, S.J. (2018). Sustainability Choice of Different Hybrid Timber Structure for Low Medium Cost Single-story Residential Building: Environmental, Economic and Social Assessment. Journal of Building Engineering. 20, p. 235–247. https://doi.org/10.1016/j.jobe.2018.07.006
Combinations of building construction material for residential building for the global warming mitigation for Malaysia
Tighnavard Balasbaneh, A. and Bin Marsono, A.K. (2015). Combinations of building construction material for residential building for the global warming mitigation for Malaysia. Construction and Building Materials. 85, pp. 100-108. https://doi.org/10.1016/j.conbuildmat.2015.03.083