Economic and environmental life cycle assessment of alternative mass timber walls to evaluate circular economy in building: MCDM method

Journal article


Tighnavard Balasbaneh, A. and Sher, W. (2022). Economic and environmental life cycle assessment of alternative mass timber walls to evaluate circular economy in building: MCDM method. Environment, Development and Sustainability. 26, p. 239–268. https://doi.org/10.1007/s10668-022-02707-7
AuthorsTighnavard Balasbaneh, A. and Sher, W.
Abstract

The construction industry is one of the largest consumers of energy and materials, which leads to it being one of the highest sources of environmental emissions. Quantifying the impact of building materials is critical if strategies for mitigating environmental deterioration are to be developed. The lifecycle assessment (LCA) consequential methodology has been applied to evaluate different methods of constructing residential double-story buildings. The ReCiPe methodology has been used for life cycle inventory. Three different forms of mass timber construction have been considered including cross-laminated timber (CLT), nail-laminated timber (NLT), and dowel-laminated timber (DLT). These have been assessed as load-bearing panels or wood frame construction. We evaluated the global warming potential (GWP), embodied energy, and cost to identify the building type with the lowest impacts. The results revealed that total CO2 emissions for mass timbers for the construction stage are 130 CO2/M2, 118 CO2/M2, and 132 CO2/M2 of the panel for CLT, DLT, and NLT, respectively. The embodied energy emission is 1921 MJ/M2, 1902 MJ/M2, and 2130 MJ/M2 related to the CLT, DLT, and NLT, respectively, for this stage. The results also indicated that the carbon emission of DLT is lowest compared to the other two alternatives in the manufacturing and construction stages. However, when the entire life cycle is considered, NLT is the most favorable material. However, based on the life cycle cost (LCC), DLT has a lower cost. Finally, multiple-criteria decision-making (MCDM) was used to normalize the results and compare the alternatives. This showed DLT to be the best alternative, followed by CLT and NLT. In conclusion, the selection of building materials needs to prioritize regulations to reduce environmental and economic impacts.

KeywordsCircular economy · Engineering wood · Life cycle analysis · Cross-laminated timber (CLT) · Nail-laminated timber (NLT) · Dowel-laminated timber (DLT)
Year2022
JournalEnvironment, Development and Sustainability
Journal citation26, p. 239–268
PublisherSpringer
ISSN1573-2975
Digital Object Identifier (DOI)https://doi.org/10.1007/s10668-022-02707-7
Web address (URL)https://link.springer.com/article/10.1007/s10668-022-02707-7
Publication dates
Online17 Oct 2022
Publication process dates
Accepted07 Oct 2022
Deposited02 Jul 2024
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/97459

Download files


Accepted author manuscript
30.docx
License: CC BY 4.0
File access level: Open

  • 44
    total views
  • 15
    total downloads
  • 5
    views this month
  • 0
    downloads this month

Export as

Related outputs

Integrating three pillars of sustainability for evaluating the modular construction building
Tighnavard Balasbaneh, A. and Ramadan, B.S. (2024). Integrating three pillars of sustainability for evaluating the modular construction building. Construction Innovation. https://doi.org/10.1108/CI-01-2024-0002
Life cycle assessment and economic analysis of Reusable formwork materials considering the circular economy
Tighnavard Balasbaneh, A., Sher, W. and Ibrahim, M.H.W. (2024). Life cycle assessment and economic analysis of Reusable formwork materials considering the circular economy. Ain Shams Engineering Journal. 15 (4), p. 102585. https://doi.org/10.1016/j.asej.2023.102585
Bending Performance of Timber Beam Strengthened with Passive Prestressing
Yeoh, D., Leng, V., Jamaluddin, N., Boon, K., Jamalaldin, S., Tighnavard Balasbaneh, A. and Ghafar, N. (2023). Bending Performance of Timber Beam Strengthened with Passive Prestressing. International Journal of Sustainable Construction Engineering and Technology. 14 (3), pp. 419-428. https://doi.org/10.30880/ijscet.2023.14.03.035
Life Cycle Cost and Evaluation of Performance between Steel Formwork and Plastic Formwork in Concrete Structure Building
Zamri, I.B. and Tighnavard Balasbaneh, A. (2023). Life Cycle Cost and Evaluation of Performance between Steel Formwork and Plastic Formwork in Concrete Structure Building. Journal of Advanced Research in Applied Sciences and Engineering Technology. 34 (2), pp. 153-168. https://doi.org/https://doi.org/10.37934/araset.34.2.153168
Life Cycle Sustainability Assessment of Alternative Green Roofs – A Systematic Literature Review
Tighnavard Balasbaneh, A., Sher, W., Madun, A. and Ashour, A. (2023). Life Cycle Sustainability Assessment of Alternative Green Roofs – A Systematic Literature Review. Building and Environment. 248 (15), p. 111064. https://doi.org/10.1016/j.buildenv.2023.111064
Recommending a new building structure to alleviate environmental impact in tropical climates: increasing the use of wood in construction
Tighnavard Balasbaneh, A., Sher, W. and Yeoh, D. (2022). Recommending a new building structure to alleviate environmental impact in tropical climates: increasing the use of wood in construction. International Journal of Life Cycle Assessment (Int J LCA). 27, p. 885–901. https://doi.org/10.1007/s11367-022-02074-5
Thermal Performance of Bio-Phase Change Materials for Thermal Insulation Coefficients in Malaysian Buildings
Tighnavard Balasbaneh, A. and Tee, K.C. (2022). Thermal Performance of Bio-Phase Change Materials for Thermal Insulation Coefficients in Malaysian Buildings. Civil Engineering and Architecture. 10 (7), pp. 2933 - 2942. https://doi.org/10.13189/cea.2022.100712
Economic and environmental life cycle perspectives on two engineered wood products: Comparison of LVL and GLT construction materials
Tighnavard Balasbaneh, A., Sher, W., Yeoh, D. and Yasin, M. (2022). Economic and environmental life cycle perspectives on two engineered wood products: Comparison of LVL and GLT construction materials. Environmental Science and Pollution Research. 30, p. 26964–26981. https://doi.org/10.1007/s11356-022-24079-1
Comparative sustainability evaluation of two engineered wood-based construction materials: Life cycle analysis of CLT versus GLT
Tighnavard Balasbaneh, A. and Sher, W. (2021). Comparative sustainability evaluation of two engineered wood-based construction materials: Life cycle analysis of CLT versus GLT. Building and Environment. 204, p. 108112. https://doi.org/10.1016/j.buildenv.2021.108112
A Comparative sustainability of Conventional and Prefabricated Prefinished Volumetric Construction (PPVC) Construction Methods
Tighnavard Balasbaneh, A., Yeoh, D. and Juki, M.I. (2021). A Comparative sustainability of Conventional and Prefabricated Prefinished Volumetric Construction (PPVC) Construction Methods. in: Environmental Footprints and Eco-design of Products and Processes Springer. pp. 179-201
Sustainability Choice of Different Hybrid Timber Structure for Low Medium Cost Single-story Residential Building: Environmental, Economic and Social Assessment
Tighnavard Balasbaneh, A., Bin Marsono, A.K. and Khaleghi, S.J. (2018). Sustainability Choice of Different Hybrid Timber Structure for Low Medium Cost Single-story Residential Building: Environmental, Economic and Social Assessment. Journal of Building Engineering. 20, p. 235–247. https://doi.org/10.1016/j.jobe.2018.07.006
Combinations of building construction material for residential building for the global warming mitigation for Malaysia
Tighnavard Balasbaneh, A. and Bin Marsono, A.K. (2015). Combinations of building construction material for residential building for the global warming mitigation for Malaysia. Construction and Building Materials. 85, pp. 100-108. https://doi.org/10.1016/j.conbuildmat.2015.03.083