Visible-Light-Active Iodide-Doped BiOBr Coatings for Sustainable Infrastructure

Journal article


Wang, M., Quesada-Cabrera, R., Sathasivam, S., Blunt, M., Borowiec, J. and Carmalt, C. (2023). Visible-Light-Active Iodide-Doped BiOBr Coatings for Sustainable Infrastructure. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.3c11525
AuthorsWang, M., Quesada-Cabrera, R., Sathasivam, S., Blunt, M., Borowiec, J. and Carmalt, C.
Abstract

The search for efficient materials for sustainable infrastructure is an urgent challenge toward potential negative emission technologies and the global environmental crisis. Pleasant, efficient sunlight-activated coatings for applications in self-cleaning windows are sought in the glass industry, particularly those produced from scalable technologies. The current work presents visible-light-active iodide-doped BiOBr thin films fabricated using aerosol-assisted chemical vapor deposition. The impact of dopant concentration on the structural, morphological, and optical properties was studied systematically. The photocatalytic properties of the parent materials and as-deposited doped films were evaluated using the smart ink test. An optimized material was identified as containing 2.7 atom % iodide dopant. Insight into the photocatalytic behavior of these coatings was gathered from photoluminescence and photoelectrochemical studies. The optimum photocatalytic performance could be explained from a balance between photon absorption, charge generation, carrier separation, and charge transport properties under 450 nm irradiation. This optimized iodide-doped BiOBr coating is an excellent candidate for the photodegradation of volatile organic pollutants, with potential applications in self-cleaning windows and other surfaces.

KeywordsGeneral Materials Science
Year2023
JournalACS Applied Materials & Interfaces
PublisherAmerican Chemical Society (ACS)
ISSN1944-8244
1944-8252
Digital Object Identifier (DOI)https://doi.org/10.1021/acsami.3c11525
Funder/ClientChina Scholarship Council
Publication dates
Online12 Oct 2023
Publication process dates
Accepted27 Sep 2023
Deposited23 Oct 2023
Publisher's version
License
File Access Level
Open
Licensehttps://creativecommons.org/licenses/by/4.0/
Permalink -

https://openresearch.lsbu.ac.uk/item/95557

Download files

  • 16
    total views
  • 4
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Superhydrophobic Hexadecyltrimethoxysilane-Modified Fumed Silica Nanostructure/Poly(butyl methacrylate) Composite Thin Films via Aerosol-Assisted Deposition: Implications for Self-Cleaning Surfaces
Huo, J., De Leon Reyes, C., Kalmoni, J.J., Park, S., Hwang, G., Sathasivam, S. and Carmalt, C. (2023). Superhydrophobic Hexadecyltrimethoxysilane-Modified Fumed Silica Nanostructure/Poly(butyl methacrylate) Composite Thin Films via Aerosol-Assisted Deposition: Implications for Self-Cleaning Surfaces. ACS Applied Nano Materials. 6 (18), p. 16383–16391. https://doi.org/10.1021/acsanm.3c02575
Comparison of Fabrication Methods for Fiber‐Optic Ultrasound Transmitters Using Candle‐Soot Nanoparticles
Bodian, S., Aytac‐Kipergil, E., Zhang, S., Lewis‐Thompson, I., Sathasivam, S., Mathews, S., Alles, E., Zhang, E., Beard, P., Gordon, Ross J., Collier, Paul, Parkin, I., Desjardins, A., Colchester, R. and Noimark, S. (2023). Comparison of Fabrication Methods for Fiber‐Optic Ultrasound Transmitters Using Candle‐Soot Nanoparticles. Advanced Materials Interfaces. 10 (9), p. 2201792. https://doi.org/10.1002/admi.202201792
Transparent and Conducting Boron Doped ZnO Thin Films Grown By Aerosol Assisted Chemical Vapor Deposition
Sathasivam, S., Zhao, S., Wang, M. and Carmalt, C.J. (2022). Transparent and Conducting Boron Doped ZnO Thin Films Grown By Aerosol Assisted Chemical Vapor Deposition. RSC Advances. https://doi.org/10.1039/D2RA05895B
Transparent and conducting boron doped ZnO thin films grown by aerosol assisted chemical vapor deposition.
Zhao, D., Sathasivam, S., Wang, M. and Carmalt, C. (2022). Transparent and conducting boron doped ZnO thin films grown by aerosol assisted chemical vapor deposition. RSC Advances. 12 (51), pp. 33049-33055. https://doi.org/10.1039/d2ra05895b
Enhanced Photoacoustic Visualisation of Clinical Needles by Combining Interstitial and Extracorporeal Illumination of Elastomeric Nanocomposite Coatings
Shi, M., Bodian, S., West, S.J., Sathasivam, S., Gordon, R.J., Collier, P., Vercauteren, T., Desjardins, A., Noimark, S. and Xia, W. (2022). Enhanced Photoacoustic Visualisation of Clinical Needles by Combining Interstitial and Extracorporeal Illumination of Elastomeric Nanocomposite Coatings. Sensors. 22 (17), p. e6417. https://doi.org/10.3390/s22176417
Production of an EP/PDMS/SA/AlZnO Coated Superhydrophobic Surface through an Aerosol-Assisted Chemical Vapor Deposition Process
Park, Seonghyeok, Huo, Jiatong, Shin, Juhun, Heo, Ki Joon, Kalmoni, Julie Jalila, Sathasivam, S., Hwang, G. and Carmalt, C. (2022). Production of an EP/PDMS/SA/AlZnO Coated Superhydrophobic Surface through an Aerosol-Assisted Chemical Vapor Deposition Process. Langmuir. https://doi.org/10.1021/acs.langmuir.2c01060
Resonant Ta Doping for Enhanced Mobility in Transparent Conducting SnO2
Williamson, B.A.D., Featherstone, T. J., Sathasivam, S., Swallow, J.E.N., Jones, A.H., Smiles, M.J., Regoutz, A., Xia, X., Blackman, C., Thaku, P. K., Carmalt, C.J., Parkin, I.P, Veal, T.D. and Scanlon, D.O (2020). Resonant Ta Doping for Enhanced Mobility in Transparent Conducting SnO2. Chemistry of Materials. 32, p. 1964−1973. https://doi.org/10.1021/acs.chemmater.9b04845
Combined Effect of Temperature Induced Strain and Oxygen Vacancy on Metal‐Insulator Transition of VO2 Colloidal Particles
Kargal, G L, Sathasivam, S., Li, J., Portnoi, M., Parkin, I. P. and Papakonstantinou, I (2020). Combined Effect of Temperature Induced Strain and Oxygen Vacancy on Metal‐Insulator Transition of VO2 Colloidal Particles. Advanced Functional Materials. 30 (49), p. 2005311. https://doi.org/10.1002/adfm.202005311