Transparent and Conducting Boron Doped ZnO Thin Films Grown By Aerosol Assisted Chemical Vapor Deposition

Journal article


Sathasivam, S., Zhao, S., Wang, M. and Carmalt, C.J. (2022). Transparent and Conducting Boron Doped ZnO Thin Films Grown By Aerosol Assisted Chemical Vapor Deposition. RSC Advances. https://doi.org/10.1039/D2RA05895B
AuthorsSathasivam, S., Zhao, S., Wang, M. and Carmalt, C.J.
Abstract

ZnO based transparent conducting oxides are important as they provide an alternative to the more expensive Sn:In2O3 that currently dominates the industry. Here, we investigate B-doped ZnO thin films grown via aerosol assisted chemical vapour deposition. B:ZnO films were produced from zinc acetate and triethylborane using either tetrahydrofuran or methanol (MeOH) as the solvent. The lowest resistivity of 5.1 x 10-3 .cm along with a visible light transmittance of ~75 - 80% was achieved when using MeOH as the solvent. XRD analysis only detected the wurtzite phase of ZnO suggesting successful solid solution formation with B3+ substituting Zn2+ sites in the lattice. Refinement of the XRD patterns showed minimal distortion to the ZnO unit cell upon doping when MeOH was the solvent due to the immiscibility of the [BEt3] solution (1.0M solution in hexane) in methanol that limited the amount of B going into the films, thus preventing excessive doping.

KeywordsTransparent Conducting Oxides, Zinc Oxide, CVD
Year2022
JournalRSC Advances
PublisherRoyal Society of Chemistry (RSC)
ISSN2046-2069
Digital Object Identifier (DOI)https://doi.org/10.1039/D2RA05895B
Web address (URL)https://pubs.rsc.org/en/content/articlehtml/2022/ra/d2ra05895b
Publication dates
Print17 Nov 2022
Publication process dates
Accepted11 Nov 2022
Deposited30 Jan 2023
Publisher's version
License
File Access Level
Open
Accepted author manuscript
License
File Access Level
Controlled
Permalink -

https://openresearch.lsbu.ac.uk/item/930z2

Download files


Publisher's version
d2ra05895b (1).pdf
License: CC BY 4.0
File access level: Open

  • 29
    total views
  • 23
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Visible-Light-Active Iodide-Doped BiOBr Coatings for Sustainable Infrastructure
Wang, M., Quesada-Cabrera, R., Sathasivam, S., Blunt, M., Borowiec, J. and Carmalt, C. (2023). Visible-Light-Active Iodide-Doped BiOBr Coatings for Sustainable Infrastructure. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.3c11525
Superhydrophobic Hexadecyltrimethoxysilane-Modified Fumed Silica Nanostructure/Poly(butyl methacrylate) Composite Thin Films via Aerosol-Assisted Deposition: Implications for Self-Cleaning Surfaces
Huo, J., De Leon Reyes, C., Kalmoni, J.J., Park, S., Hwang, G., Sathasivam, S. and Carmalt, C. (2023). Superhydrophobic Hexadecyltrimethoxysilane-Modified Fumed Silica Nanostructure/Poly(butyl methacrylate) Composite Thin Films via Aerosol-Assisted Deposition: Implications for Self-Cleaning Surfaces. ACS Applied Nano Materials. 6 (18), p. 16383–16391. https://doi.org/10.1021/acsanm.3c02575
Comparison of Fabrication Methods for Fiber‐Optic Ultrasound Transmitters Using Candle‐Soot Nanoparticles
Bodian, S., Aytac‐Kipergil, E., Zhang, S., Lewis‐Thompson, I., Sathasivam, S., Mathews, S., Alles, E., Zhang, E., Beard, P., Gordon, Ross J., Collier, Paul, Parkin, I., Desjardins, A., Colchester, R. and Noimark, S. (2023). Comparison of Fabrication Methods for Fiber‐Optic Ultrasound Transmitters Using Candle‐Soot Nanoparticles. Advanced Materials Interfaces. 10 (9), p. 2201792. https://doi.org/10.1002/admi.202201792
Transparent and conducting boron doped ZnO thin films grown by aerosol assisted chemical vapor deposition.
Zhao, D., Sathasivam, S., Wang, M. and Carmalt, C. (2022). Transparent and conducting boron doped ZnO thin films grown by aerosol assisted chemical vapor deposition. RSC Advances. 12 (51), pp. 33049-33055. https://doi.org/10.1039/d2ra05895b
Enhanced Photoacoustic Visualisation of Clinical Needles by Combining Interstitial and Extracorporeal Illumination of Elastomeric Nanocomposite Coatings
Shi, M., Bodian, S., West, S.J., Sathasivam, S., Gordon, R.J., Collier, P., Vercauteren, T., Desjardins, A., Noimark, S. and Xia, W. (2022). Enhanced Photoacoustic Visualisation of Clinical Needles by Combining Interstitial and Extracorporeal Illumination of Elastomeric Nanocomposite Coatings. Sensors. 22 (17), p. e6417. https://doi.org/10.3390/s22176417
Production of an EP/PDMS/SA/AlZnO Coated Superhydrophobic Surface through an Aerosol-Assisted Chemical Vapor Deposition Process
Park, Seonghyeok, Huo, Jiatong, Shin, Juhun, Heo, Ki Joon, Kalmoni, Julie Jalila, Sathasivam, S., Hwang, G. and Carmalt, C. (2022). Production of an EP/PDMS/SA/AlZnO Coated Superhydrophobic Surface through an Aerosol-Assisted Chemical Vapor Deposition Process. Langmuir. https://doi.org/10.1021/acs.langmuir.2c01060
Resonant Ta Doping for Enhanced Mobility in Transparent Conducting SnO2
Williamson, B.A.D., Featherstone, T. J., Sathasivam, S., Swallow, J.E.N., Jones, A.H., Smiles, M.J., Regoutz, A., Xia, X., Blackman, C., Thaku, P. K., Carmalt, C.J., Parkin, I.P, Veal, T.D. and Scanlon, D.O (2020). Resonant Ta Doping for Enhanced Mobility in Transparent Conducting SnO2. Chemistry of Materials. 32, p. 1964−1973. https://doi.org/10.1021/acs.chemmater.9b04845
Combined Effect of Temperature Induced Strain and Oxygen Vacancy on Metal‐Insulator Transition of VO2 Colloidal Particles
Kargal, G L, Sathasivam, S., Li, J., Portnoi, M., Parkin, I. P. and Papakonstantinou, I (2020). Combined Effect of Temperature Induced Strain and Oxygen Vacancy on Metal‐Insulator Transition of VO2 Colloidal Particles. Advanced Functional Materials. 30 (49), p. 2005311. https://doi.org/10.1002/adfm.202005311