Superhydrophobic Hexadecyltrimethoxysilane-Modified Fumed Silica Nanostructure/Poly(butyl methacrylate) Composite Thin Films via Aerosol-Assisted Deposition: Implications for Self-Cleaning Surfaces

Journal article


Huo, J., De Leon Reyes, C., Kalmoni, J.J., Park, S., Hwang, G., Sathasivam, S. and Carmalt, C. (2023). Superhydrophobic Hexadecyltrimethoxysilane-Modified Fumed Silica Nanostructure/Poly(butyl methacrylate) Composite Thin Films via Aerosol-Assisted Deposition: Implications for Self-Cleaning Surfaces. ACS Applied Nano Materials. 6 (18), p. 16383–16391. https://doi.org/10.1021/acsanm.3c02575
AuthorsHuo, J., De Leon Reyes, C., Kalmoni, J.J., Park, S., Hwang, G., Sathasivam, S. and Carmalt, C.
Abstract

Superhydrophobic coatings with their unique nanostructured surface properties have application in many industrially important technologies but are currently dominated by environmentally problematic fluorinated compounds. Here, we demonstrate the fabrication of fluorocarbon-free superhydrophobic coatings consisting of poly(butyl methacrylate) (PBMA) and nanostructured hexadecyltrimethoxysilane (HDTMS)-functionalized fumed SiO2/PBMA as self-cleaning surfaces via a facile ambient pressure aerosol deposition route. X-ray photoelectron and infrared spectroscopy measurements showed successful composite formation. The deposition temperature and HDTMS-SiO2:PBMA ratio was optimized to give films that had a water contact angle as high as 161 ± 1° and a sliding angle of 1°, owing to a hierarchical surface nano- and microstructure and a root-mean-square surface roughness of 592 nm. This work shows a high-throughput single-step route to environmentally friendly PBMA-based superhydrophobic coatings.

KeywordsGeneral Materials Science
Year2023
JournalACS Applied Nano Materials
Journal citation6 (18), p. 16383–16391
PublisherAmerican Chemical Society (ACS)
ISSN2574-0970
Digital Object Identifier (DOI)https://doi.org/10.1021/acsanm.3c02575
Funder/ClientLondon South Bank University
Publication dates
Online31 Aug 2023
Publication process dates
Accepted18 Aug 2023
Deposited15 Sep 2023
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/94yxv

Download files


Accepted author manuscript
PBMA Manuscript (Carmalt et al).docx
License: CC BY 4.0
File access level: Open

  • 49
    total views
  • 48
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

An Aerosol-Assisted Chemical Vapor Deposition Route to Tin-Doped Gallium Oxide Thin Films with Optoelectronic Properties
Chen, R., Sathasivam, S., Borowiec, J. and Carmalt, C. (2024). An Aerosol-Assisted Chemical Vapor Deposition Route to Tin-Doped Gallium Oxide Thin Films with Optoelectronic Properties. ACS Applied Electronic Materials. https://doi.org/10.1021/acsaelm.4c00973
Surface mapping of photocatalytic activity in heterogeneous TiO2 films
Lee, R., Park, S., Sathasivam, S., Mills, A., Parkin, I.P., Palgrave, R.P. and Quesada-Cabrera, R. (2024). Surface mapping of photocatalytic activity in heterogeneous TiO2 films. Journal of Materials Chemistry A. 15. https://doi.org/10.1039/D4TA03692A
Visible-Light-Active Iodide-Doped BiOBr Coatings for Sustainable Infrastructure
Wang, M., Quesada-Cabrera, R., Sathasivam, S., Blunt, M., Borowiec, J. and Carmalt, C. (2023). Visible-Light-Active Iodide-Doped BiOBr Coatings for Sustainable Infrastructure. ACS Applied Materials & Interfaces. https://doi.org/10.1021/acsami.3c11525
Comparison of Fabrication Methods for Fiber‐Optic Ultrasound Transmitters Using Candle‐Soot Nanoparticles
Bodian, S., Aytac‐Kipergil, E., Zhang, S., Lewis‐Thompson, I., Sathasivam, S., Mathews, S., Alles, E., Zhang, E., Beard, P., Gordon, Ross J., Collier, Paul, Parkin, I., Desjardins, A., Colchester, R. and Noimark, S. (2023). Comparison of Fabrication Methods for Fiber‐Optic Ultrasound Transmitters Using Candle‐Soot Nanoparticles. Advanced Materials Interfaces. 10 (9), p. 2201792. https://doi.org/10.1002/admi.202201792
Transparent and Conducting Boron Doped ZnO Thin Films Grown By Aerosol Assisted Chemical Vapor Deposition
Zhao, S., Sathasivam, S., Wang, M. and Carmalt, C.J. (2022). Transparent and Conducting Boron Doped ZnO Thin Films Grown By Aerosol Assisted Chemical Vapor Deposition. RSC Advances. https://doi.org/10.1039/D2RA05895B
Transparent and conducting boron doped ZnO thin films grown by aerosol assisted chemical vapor deposition.
Zhao, D., Sathasivam, S., Wang, M. and Carmalt, C. (2022). Transparent and conducting boron doped ZnO thin films grown by aerosol assisted chemical vapor deposition. RSC Advances. 12 (51), pp. 33049-33055. https://doi.org/10.1039/d2ra05895b
Enhanced Photoacoustic Visualisation of Clinical Needles by Combining Interstitial and Extracorporeal Illumination of Elastomeric Nanocomposite Coatings
Shi, M., Bodian, S., West, S.J., Sathasivam, S., Gordon, R.J., Collier, P., Vercauteren, T., Desjardins, A., Noimark, S. and Xia, W. (2022). Enhanced Photoacoustic Visualisation of Clinical Needles by Combining Interstitial and Extracorporeal Illumination of Elastomeric Nanocomposite Coatings. Sensors. 22 (17), p. e6417. https://doi.org/10.3390/s22176417
Production of an EP/PDMS/SA/AlZnO Coated Superhydrophobic Surface through an Aerosol-Assisted Chemical Vapor Deposition Process
Park, Seonghyeok, Huo, Jiatong, Shin, Juhun, Heo, Ki Joon, Kalmoni, Julie Jalila, Sathasivam, S., Hwang, G. and Carmalt, C. (2022). Production of an EP/PDMS/SA/AlZnO Coated Superhydrophobic Surface through an Aerosol-Assisted Chemical Vapor Deposition Process. Langmuir. https://doi.org/10.1021/acs.langmuir.2c01060
Resonant Ta Doping for Enhanced Mobility in Transparent Conducting SnO2
Williamson, B.A.D., Featherstone, T. J., Sathasivam, S., Swallow, J.E.N., Jones, A.H., Smiles, M.J., Regoutz, A., Xia, X., Blackman, C., Thaku, P. K., Carmalt, C.J., Parkin, I.P, Veal, T.D. and Scanlon, D.O (2020). Resonant Ta Doping for Enhanced Mobility in Transparent Conducting SnO2. Chemistry of Materials. 32, p. 1964−1973. https://doi.org/10.1021/acs.chemmater.9b04845
Combined Effect of Temperature Induced Strain and Oxygen Vacancy on Metal‐Insulator Transition of VO2 Colloidal Particles
Kargal, G L, Sathasivam, S., Li, J., Portnoi, M., Parkin, I. P. and Papakonstantinou, I (2020). Combined Effect of Temperature Induced Strain and Oxygen Vacancy on Metal‐Insulator Transition of VO2 Colloidal Particles. Advanced Functional Materials. 30 (49), p. 2005311. https://doi.org/10.1002/adfm.202005311