Diversifying the Role of Distributed Generation Grid-Side Converters for Improving the Power Quality of Distribution Networks Using Advanced Control Techniques

Journal article


Ali, Z., Christofides, N., Hadjidemetriou, L. and Kyriakides, E. (2019). Diversifying the Role of Distributed Generation Grid-Side Converters for Improving the Power Quality of Distribution Networks Using Advanced Control Techniques. IEEE Transactions on Industry Applications. 55 (4), pp. 4110-4123. https://doi.org/10.1109/TIA.2019.2904678
AuthorsAli, Z., Christofides, N., Hadjidemetriou, L. and Kyriakides, E.
Abstract

Diversifying the role of grid-side converters (GSCs) associated with distributed generation (DG) may have a technical and economic impact. The increasing number of residential photovoltaic systems can be exploited by distribution network (DN) operators in order to support and improve the power quality of the grid without considerable further capital investment. The GSC can support the grid during abnormal conditions but may also be used to improve the DN power quality by balancing out asymmetries and alleviating the grid from undesired harmonics. The proposed advanced control technique demonstrates through simulation and experimental results that the role of GSC can be upgraded to improve the power quality of the grid. Furthermore, the proposed control scheme is validated on a realistic low-voltage DN using data from the Electricity Authority of Cyprus. Consequently, conventional practices by DN operators for improving the power quality can be reassessed as the necessary power electronics hardware for mitigating grid problems is already present within the GSCs of DG systems.

Keywordsdistributed power generation , photovoltaic power systems , power convertors , power distribution control , power distribution economics , power electronics , power grids , power supply quality
Year2019
JournalIEEE Transactions on Industry Applications
Journal citation55 (4), pp. 4110-4123
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
ISSN1939-9367
Digital Object Identifier (DOI)https://doi.org/10.1109/TIA.2019.2904678
Web address (URL)https://ieeexplore.ieee.org/abstract/document/8665940
Publication dates
Print12 Mar 2019
Publication process dates
Deposited08 Sep 2023
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/94y00

Download files


Accepted author manuscript
PID4884861.pdf
License: CC BY 4.0
File access level: Open

  • 0
    total views
  • 2
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Multiobjective Optimized Smart Charge Controller for Electric Vehicle Applications
Ali, Z., Putrus, G., Marzband, M., Gholinejad, H., Saleem, K. and Subudhi, B. (2023). Multiobjective Optimized Smart Charge Controller for Electric Vehicle Applications. IEEE Transactions on Industry Applications. 58 (5), pp. 5602-5615. https://doi.org/10.1109/TIA.2022.3164999
Variable Structure-Based Control for Dynamic Temperature Setpoint Regulation in Hospital Extreme Healthcare Zones
Hamza, A., Uneeb, M., Ahmad, I., Saleem, K. and Ali, Z. (2023). Variable Structure-Based Control for Dynamic Temperature Setpoint Regulation in Hospital Extreme Healthcare Zones. Energies. 16 (10), p. 4223. https://doi.org/10.3390/en16104223
Forecasting Global Solar Insolation Using the Ensemble Kalman Filter Based Clearness Index Model
Ray, P. K., Subudhi, B., Putrus, G., Marzband, M. and Ali, Z. (2022). Forecasting Global Solar Insolation Using the Ensemble Kalman Filter Based Clearness Index Model. IEEE CSEE Journal of Power and Energy Systems. 8 (4), pp. 1087-1096. https://doi.org/10.17775/CSEEJPES.2021.06230
Microgrid Cyberphysical Systems ; Chapter 5 - Control of PV and EV connected smart grid
Ali, Z., Saleem, K., Putrus, G., Marzband, M. and Dudley-Mcevoy, S. (2022). Microgrid Cyberphysical Systems ; Chapter 5 - Control of PV and EV connected smart grid. in: Subudhi, B. (ed.) Elsevier Renewable Energy and Plug-In Vehicle Integration Elsevier Renewable Energy and Plug-In Vehicle Integration.
Performance Analysis and Benchmarking of PLL-Driven Phasor Measurement Units for Renewable Energy Systems
Ali, Z., Saleem, K., Brown, R., Christofides, N. and Dudley-Mcevoy, S. (2022). Performance Analysis and Benchmarking of PLL-Driven Phasor Measurement Units for Renewable Energy Systems. Energies. 15 (5), p. e1867. https://doi.org/10.3390/en15051867
A single-phase synchronization technique for grid-connected energy storage system under faulty grid conditions
Saleem, K., Ali, Z. and K. Mehran (2021). A single-phase synchronization technique for grid-connected energy storage system under faulty grid conditions. IEEE Transactions on Power Electronics. 36 (10), pp. 12019-12032. https://doi.org/10.1109/TPEL.2021.3071418
Enhancement of flexibility in multi-energy microgrids considering voltage and congestion improvement: Robust thermal comfort against reserve calls
Kazemi-Razi, S.M., Abyaneh, H.A., Nafisi, H., Ali, Z. and Marzband, M. (2021). Enhancement of flexibility in multi-energy microgrids considering voltage and congestion improvement: Robust thermal comfort against reserve calls. Sustainable Cities and Society. 74, p. 103160. https://doi.org/10.1016/j.scs.2021.103160
Online Sensorless Solar Power Forecasting for Microgrid Control and Automation
Ali, Z., Putrus, G., Marzband, M., Tookanlou, M., Saleem, K., Ray, P. and Subudhi, B. (2021). Online Sensorless Solar Power Forecasting for Microgrid Control and Automation. 2021 International Symposium of Asian Control Association on Intelligent Robotics and Industrial Automation (IRIA). Goa, India 20 - 22 Sep 2021 IEEE. https://doi.org/10.1109/IRIA53009.2021.9588690
Autonomous energy management system with self-healing capabilities for green buildings (microgrids)
Mansour Selseleh, Jonban, Romeral, Luis, Akbarimajd, Adel, Ali, Zunaib, Seyedeh Samaneh, Ghazimirsaeid, Marzband, Mousa and Putrus, Ghanim, Jonban, M.S., Romeral, L., Akbarimajd, A., Ali, Z., Ghazimirsaeid, S.S., Marzband, M. and Putrus, G. (2020). Autonomous energy management system with self-healing capabilities for green buildings (microgrids). Journal of Building Engineering. 34, p. 101604. https://doi.org/10.1016/j.jobe.2020.101604
Three-phase phase-locked loop synchronization algorithms for grid-connected renewable energy systems: A review
Ali, Z., Christofides, N., Hadjidemetriou, L., Kyriakides, E., Yang, Y. and Blaabjerg, F. (2018). Three-phase phase-locked loop synchronization algorithms for grid-connected renewable energy systems: A review. Renewable and Sustainable Energy Reviews. 90, pp. 434-452. https://doi.org/10.1016/j.rser.2018.03.086