Autonomous energy management system with self-healing capabilities for green buildings (microgrids)

Journal article


Mansour Selseleh, Jonban, Romeral, Luis, Akbarimajd, Adel, Ali, Zunaib, Seyedeh Samaneh, Ghazimirsaeid, Marzband, Mousa and Putrus, Ghanim, Jonban, M.S., Romeral, L., Akbarimajd, A., Ali, Z., Ghazimirsaeid, S.S., Marzband, M. and Putrus, G. (2020). Autonomous energy management system with self-healing capabilities for green buildings (microgrids). Journal of Building Engineering. 34, p. 101604. https://doi.org/10.1016/j.jobe.2020.101604
AuthorsMansour Selseleh, Jonban, Romeral, Luis, Akbarimajd, Adel, Ali, Zunaib, Seyedeh Samaneh, Ghazimirsaeid, Marzband, Mousa and Putrus, Ghanim, Jonban, M.S., Romeral, L., Akbarimajd, A., Ali, Z., Ghazimirsaeid, S.S., Marzband, M. and Putrus, G.
Abstract

Nowadays, distributed energy resources are widely used to supply demand in micro grids specially in green buildings. These resources are usually connected by using power electronic converters, which act as actuators, to the system and make it possible to inject desired active and reactive power, as determined by smart controllers. The overall performance of a converter in such system depends on the stability and robustness of the control techniques. This paper presents a smart control and energy management of a DC microgrid that split the demand among several generators. In this research, an energy management system ( EMS) based on multi-agent system ( MAS) controllers is developed to manage energy, control the voltage and create balance between supply and demand in the system with the aim of supporting the reliability characteristic. In the proposed approach, a reconfigurated hierarchical algorithm is implemented to control interaction of agents, where a CAN bus is used to provide communication among them. This framework has ability to control system, even if a failure appears into decision unit. Theoretical analysis and simulation results for a practical model demonstrate that the proposed technique provides a robust and stable control of a microgrid.

KeywordsEnergy management system, Multi-agent system, Self-healing, Subsumption architecture, Microgrid, Green building
Year2020
JournalJournal of Building Engineering
Journal citation34, p. 101604
PublisherElsevier
ISSN 2352-7102
Digital Object Identifier (DOI)https://doi.org/10.1016/j.jobe.2020.101604
Web address (URL)https://www.sciencedirect.com/science/article/pii/S2352710220308822
Publication dates
Print24 Aug 2020
Publication process dates
Accepted16 Jun 2020
Deposited11 Aug 2023
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/94qwy

Download files


Accepted author manuscript
paper.pdf
License: CC BY-NC-ND 4.0
File access level: Open

  • 37
    total views
  • 9
    total downloads
  • 4
    views this month
  • 0
    downloads this month

Export as

Related outputs

Modified Flower Pollination Algorithm for Energy Forecasting and Demand Management Coupled with Improved Battery Life for Smart Building Micro-Grid
Hamza, Ali, Ali, Zunaib, Dudley, Sandra, Uneeb, Muhammad, Alghamdi, Sultan M and Christofides, Nicholas (2024). Modified Flower Pollination Algorithm for Energy Forecasting and Demand Management Coupled with Improved Battery Life for Smart Building Micro-Grid. 2024 IEEE Texas Power and Energy Conference (TPEC). https://doi.org/10.1109/tpec60005.2024.10472245
Variable structure based control strategy for treatment of HCV infection
Hamza, A., Uneeb, M., Ahmad, I., Saleem, K. and Ali, Z. (2024). Variable structure based control strategy for treatment of HCV infection. Biomedical Signal Processing and Control. 89, p. 105803. https://doi.org/10.1016/j.bspc.2023.105803
Distribution Substation Dynamic Reconfiguration and Reinforcement-Digital Twin Model
Brown, R., Wickramarachchi, W., Ali, Z., Saleem, K. and Dudley-Mcevoy, S. (2023). Distribution Substation Dynamic Reconfiguration and Reinforcement-Digital Twin Model. IEEE Energy Conversion Congress and Exposition (ECCE). Center in Nashville, Tennessee | October 29 – November 2, 2023 29 Oct - 02 Nov 2023 Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/ECCE53617.2023.10362160
Modeling and Experimental Investigation of Energy Management for Hybrid Electric Vehicle based on Variable Structure Control Strategy
Ali H., Muhammad U., Saleem K. and Ali Z. (2023). Modeling and Experimental Investigation of Energy Management for Hybrid Electric Vehicle based on Variable Structure Control Strategy. 2023 IEEE International Conference on Energy Technologies for Future Grids (ETFG). Wollongong, Australia 03 - 06 Dec 2023 Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/ETFG55873.2023.10408458
Multiobjective Optimized Smart Charge Controller for Electric Vehicle Applications
Ali, Z., Putrus, G., Marzband, M., Gholinejad, H., Saleem, K. and Subudhi, B. (2023). Multiobjective Optimized Smart Charge Controller for Electric Vehicle Applications. IEEE Transactions on Industry Applications. 58 (5), pp. 5602-5615. https://doi.org/10.1109/TIA.2022.3164999
Variable Structure-Based Control for Dynamic Temperature Setpoint Regulation in Hospital Extreme Healthcare Zones
Hamza, A., Uneeb, M., Ahmad, I., Saleem, K. and Ali, Z. (2023). Variable Structure-Based Control for Dynamic Temperature Setpoint Regulation in Hospital Extreme Healthcare Zones. Energies. 16 (10), p. 4223. https://doi.org/10.3390/en16104223
Forecasting Global Solar Insolation Using the Ensemble Kalman Filter Based Clearness Index Model
Ray, P. K., Subudhi, B., Putrus, G., Marzband, M. and Ali, Z. (2022). Forecasting Global Solar Insolation Using the Ensemble Kalman Filter Based Clearness Index Model. IEEE CSEE Journal of Power and Energy Systems. 8 (4), pp. 1087-1096. https://doi.org/10.17775/CSEEJPES.2021.06230
Microgrid Cyberphysical Systems ; Chapter 5 - Control of PV and EV connected smart grid
Ali, Z., Saleem, K., Putrus, G., Marzband, M. and Dudley-Mcevoy, S. (2022). Microgrid Cyberphysical Systems ; Chapter 5 - Control of PV and EV connected smart grid. in: Subudhi, B. (ed.) Elsevier Renewable Energy and Plug-In Vehicle Integration Elsevier Renewable Energy and Plug-In Vehicle Integration.
Performance Analysis and Benchmarking of PLL-Driven Phasor Measurement Units for Renewable Energy Systems
Ali, Z., Saleem, K., Brown, R., Christofides, N. and Dudley-Mcevoy, S. (2022). Performance Analysis and Benchmarking of PLL-Driven Phasor Measurement Units for Renewable Energy Systems. Energies. 15 (5), p. e1867. https://doi.org/10.3390/en15051867
Micro market based optimisation framework for decentralised management of distributed flexibility assets
Paladin, A., Das, R., Wang, Y., Ali, Z., Kotter, R., Putrus, G. and Turri, R. (2021). Micro market based optimisation framework for decentralised management of distributed flexibility assets. Renewable Energy. 163, pp. 1595-1611. https://doi.org/10.1016/j.renene.2020.10.003
On Beneficial Vehicle-to-Grid (V2G) Services
Bentley, E., Putrus, G., Lacey, G., Kotter, R., Wang, Y., Das R,, Ali, Z. and Warmerdam, J. (2021). On Beneficial Vehicle-to-Grid (V2G) Services. 2021 9th International Conference on Modern Power Systems (MPS). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/MPS52805.2021.9492671
Heuristic Multi-Agent Control for Energy Management of Microgrids with Distributed Energy Sources
Ali, Z., Putrus, G., Marzband, M., Tookanlou, M.B., Saleem, K., Ray, P.K. and Subudhi, B. (2021). Heuristic Multi-Agent Control for Energy Management of Microgrids with Distributed Energy Sources. 2021 56th International Universities Power Engineering Conference (UPEC). https://doi.org/10.1109/UPEC50034.2021.9548152
A single-phase synchronization technique for grid-connected energy storage system under faulty grid conditions
Saleem, K., Ali, Z. and K. Mehran (2021). A single-phase synchronization technique for grid-connected energy storage system under faulty grid conditions. IEEE Transactions on Power Electronics. 36 (10), pp. 12019-12032. https://doi.org/10.1109/TPEL.2021.3071418
Enhancement of flexibility in multi-energy microgrids considering voltage and congestion improvement: Robust thermal comfort against reserve calls
Kazemi-Razi, S.M., Abyaneh, H.A., Nafisi, H., Ali, Z. and Marzband, M. (2021). Enhancement of flexibility in multi-energy microgrids considering voltage and congestion improvement: Robust thermal comfort against reserve calls. Sustainable Cities and Society. 74, p. 103160. https://doi.org/10.1016/j.scs.2021.103160
Online Sensorless Solar Power Forecasting for Microgrid Control and Automation
Ali, Z., Putrus, G., Marzband, M., Tookanlou, M., Saleem, K., Ray, P. and Subudhi, B. (2021). Online Sensorless Solar Power Forecasting for Microgrid Control and Automation. 2021 International Symposium of Asian Control Association on Intelligent Robotics and Industrial Automation (IRIA). Goa, India 20 - 22 Sep 2021 IEEE. https://doi.org/10.1109/IRIA53009.2021.9588690
Online reduced complexity parameter estimation technique for equivalent circuit model of lithium-ion battery
Saleem, K., Mehran, K. and Ali, Z. (2020). Online reduced complexity parameter estimation technique for equivalent circuit model of lithium-ion battery. Electric Power Systems Research. 185, p. 106356. https://doi.org/10.1016/j.epsr.2020.106356
An improved pre-filtering moving average filter based synchronization algorithm for single-phase V2G application
Saleem, K., Mehran, K. and Ali, Z. (2020). An improved pre-filtering moving average filter based synchronization algorithm for single-phase V2G application. 2020 IEEE Energy Conversion Congress and Exposition (ECCE). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/ECCE44975.2020.9236406
Diversifying the Role of Distributed Generation Grid-Side Converters for Improving the Power Quality of Distribution Networks Using Advanced Control Techniques
Ali, Z., Christofides, N., Hadjidemetriou, L. and Kyriakides, E. (2019). Diversifying the Role of Distributed Generation Grid-Side Converters for Improving the Power Quality of Distribution Networks Using Advanced Control Techniques. IEEE Transactions on Industry Applications. 55 (4), pp. 4110-4123. https://doi.org/10.1109/TIA.2019.2904678
Three-phase phase-locked loop synchronization algorithms for grid-connected renewable energy systems: A review
Ali, Z., Christofides, N., Hadjidemetriou, L., Kyriakides, E., Yang, Y. and Blaabjerg, F. (2018). Three-phase phase-locked loop synchronization algorithms for grid-connected renewable energy systems: A review. Renewable and Sustainable Energy Reviews. 90, pp. 434-452. https://doi.org/10.1016/j.rser.2018.03.086