High Efficiency Water Splitting using Ultrasound Coupled to a BaTiO 3 Nanofluid

Journal article


Zhang, Y., Khanbareh, H., Dunn, S., Bowen, C., Gong, H., Duy, N.P.H. and Phuong, P.T.T. (2022). High Efficiency Water Splitting using Ultrasound Coupled to a BaTiO 3 Nanofluid. Advanced Science. https://doi.org/10.1002/advs.202105248
AuthorsZhang, Y., Khanbareh, H., Dunn, S., Bowen, C., Gong, H., Duy, N.P.H. and Phuong, P.T.T.
Abstract

To date, a number of studies have reported the use of vibrations coupled to ferroelectric materials for water splitting. However, producing a stable particle suspension for high efficiency and long-term stability remains a challenge. Here, the first report of the production of a nanofluidic BaTiO3 suspension containing a mixture of cubic and tetragonal phases that splits water under ultrasound is provided. The BaTiO3 particle size reduces from approximately 400 nm to approximately 150 nm during the application of ultrasound and the fine-scale nature of the particulates leads to the formation of a stable nanofluid consisting of BaTiO3 particles suspended as a nanofluid. Long-term testing demonstrates repeatable H2 evolution over 4 days with a continuous 24 h period of stable catalysis. A maximum rate of H2 evolution is found to be 270 mmol h–1 g–1 for a loading of 5 mg l–1 of BaTiO3 in 10% MeOH/H2O. This work indicates the potential of harnessing vibrations for water splitting in functional materials and is the first demonstration of exploiting a ferroelectric nanofluid for stable water splitting, which leads to the highest efficiency of piezoelectrically driven water splitting reported to date.

KeywordsGeneral Physics and Astronomy; General Engineering; Biochemistry, Genetics and Molecular Biology (miscellaneous); General Materials Science; General Chemical Engineering; Medicine (miscellaneous)
Year2022
JournalAdvanced Science
PublisherWiley
ISSN2198-3844
Digital Object Identifier (DOI)https://doi.org/10.1002/advs.202105248
Funder/ClientLeverhulme Trust
State Key Laboratory of Powder Metallurgy
Publication dates
Online27 Jan 2022
Publication process dates
Accepted16 Dec 2021
Deposited10 Feb 2022
Publisher's version
License
File Access Level
Open
Licensehttp://creativecommons.org/licenses/by/4.0/
Page range2105248
Permalink -

https://openresearch.lsbu.ac.uk/item/8z480

  • 112
    total views
  • 133
    total downloads
  • 0
    views this month
  • 2
    downloads this month

Export as

Related outputs

Understanding the effect of saturated gases on catalytic performance of graphitic‐carbon nitride (g‐C<sub>3</sub>N<sub>4</sub>) for H<sub>2</sub>O<sub>2</sub> generation and dye degradation in the presence of ultrasound
Karunakaran, A., Nguyen, H.P., Bowen, C.R., Marken, F., Narayan, B., Dunn, S., Zhang, Y., Jia, M., Zhao, Y., Nguyen, N.P., Le, B.T. and Pham, T.T. (2024). Understanding the effect of saturated gases on catalytic performance of graphitic‐carbon nitride (g‐C<sub>3</sub>N<sub>4</sub>) for H<sub>2</sub>O<sub>2</sub> generation and dye degradation in the presence of ultrasound. Advanced Engineering Materials. https://doi.org/10.1002/adem.202301958
High Thermoelectric Performance Related to PVDF Ferroelectric Domains in P-Type Flexible PVDF-Bi
Jiang, Q., Pan, D., Wang, Y., Liu, Y., Luo, Y., Yang, J., Li, B., Dunn, S. and Yan, H. (2023). High Thermoelectric Performance Related to PVDF Ferroelectric Domains in P-Type Flexible PVDF-Bi. Small (Weinheim an der Bergstrasse, Germany). https://doi.org/10.1002/smll.202306786
Origin of the switchable photocurrent direction in BiFeO
Wang, Y., Daboczi, M., Zhang, Man, Briscoe, J., Kim, J., Yan, H. and Dunn, Steve (2023). Origin of the switchable photocurrent direction in BiFeO. Materials Horizons. https://doi.org/10.1039/d3mh01510f
Origin of the switchable photocurrent direction in BiFeO3 thin films
Wang, Y., Daboczi, M., Zhang, M., Briscoe, J., Kim, J-S., Yan, H. and Dunn, S. (2023). Origin of the switchable photocurrent direction in BiFeO3 thin films. Materials Horizons. https://doi.org/10.1039/D3MH01510F
Impact of stirring regime on piezocatalytic dye degradation using BaTiO3 nanoparticles
Prasanna, G., Nguyen, H.P., Dunn, S., Karunakaran, A., Marken, F., Bowen, C.R., Le, B.T., Nguyen, H. and Pham, T.T. (2023). Impact of stirring regime on piezocatalytic dye degradation using BaTiO3 nanoparticles. Nano Energy. https://doi.org/10.1016/j.nanoen.2023.108794
Fundamentals, advances and perspectives of piezocatalysis: A marriage of solid-state physics and catalytic chemistry
Meng, N., Liu, W., Jiang, R., Zhang, Y., Dunn, S., Wu, J. and Yan, H. (2023). Fundamentals, advances and perspectives of piezocatalysis: A marriage of solid-state physics and catalytic chemistry. Progress in Materials Science. 138, p. 101161. https://doi.org/10.1016/j.pmatsci.2023.101161
Outstanding visible light photocatalysis by nano-TiO2 hybrids with nitrogen-doped carbon quantum dots and/or reduced graphene oxide
Baragau, I., Buckeridge, J., Nguyen, K., Heil, T, Sajjad, T., Thomson, S., Rennie, A., Morgan, D., Power, N., Nicolae, S., Titirici, M., Dunn, S. and Kellici, S. (2023). Outstanding visible light photocatalysis by nano-TiO2 hybrids with nitrogen-doped carbon quantum dots and/or reduced graphene oxide. Journal of Materials Chemistry A. https://doi.org/10.1039/D2TA09586F
3D printed SrNbO2N photocatalyst for degradation of organic pollutants in water
Iborra-Torres, A., Husˇ, M., Nguyen, K., Vamvakeros, A., Sajjad, T., Dunn, S., Mertens, M., Jacques, S., Beale, A., Likozar, B., Hyett, G., Kellici, S. and Middelkoop, V. (2023). 3D printed SrNbO2N photocatalyst for degradation of organic pollutants in water. Materials Advances. https://doi.org/10.1039/D2MA01076C
Enhancement of Thermoelectric Performance in Bi0.5Sb1.5Te3 Particulate Composites Including Ferroelectric BaTiO3 Nanodots
Cheng, Y., Yang, J., Luo, Y., Li, Wang, Vtyurin, A., Jiang, Q., Dunn, S. and Yan, H. (2022). Enhancement of Thermoelectric Performance in Bi0.5Sb1.5Te3 Particulate Composites Including Ferroelectric BaTiO3 Nanodots. ACS Applied Materials &amp; Interfaces. 14 (32), p. 37204–37212. https://doi.org/10.1021/acsami.2c10424
Chemical solution deposition of single phase BiFeO3 thin films on transparent substrates
Wang, Y., Zhang, M., Yue, Y., Zhang, H., Mahajan, A., Dunn, S. and Yan, H. (2022). Chemical solution deposition of single phase BiFeO3 thin films on transparent substrates. Solar RRL. https://doi.org/10.1002/solr.202200124
In-situ continuous hydrothermal synthesis of TiO2 nanoparticles on conductive N-doped MXene nanosheets for binder-free Li-ion battery anodes
Alli, U., McCarthy, K, Baragau, I., Power, N., Morgan, K, Dunn, S., Killian, S, Kennedy, T. and Kellici, S. (2021). In-situ continuous hydrothermal synthesis of TiO2 nanoparticles on conductive N-doped MXene nanosheets for binder-free Li-ion battery anodes. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2021.132976
Facile one-step synthesis and enhanced photocatalytic activity of WC/ferroelectric nanocomposite
Zhang, M., Wang, Y., Liu, J., Thangamuthu, M., Yue, Y., Yan, Z., Feng, J., Zhang, J., Zhang, H., Guan, S., Titirici, M., Abrahams, I., Tang, J., Zhang, Z., Dunn, S. and Yan, H. (2021). Facile one-step synthesis and enhanced photocatalytic activity of WC/ferroelectric nanocomposite. Journal of Materials Chemistry A.
Pyroelectric Materials for Energy Harvesting
Guru Prasanna, G. S., Dunn, S. and Billing, M. (2021). Pyroelectric Materials for Energy Harvesting. London Doctoral Academy Postgraduate Research Summer School 2021. London South Bank University 05 - 08 Jul 2021
An Efficient Continuous Hydrothermal Flow Synthesis of Carbon Quantum Dots from a Targeted Biomass Precursor for On-Off Metal Ions Nano-Sensing
Baragau, I., Power, N., Morgan, D, Lobo, R, Roberts, C, Titirici, M., Dunn, S. and Kellici, S. (2021). An Efficient Continuous Hydrothermal Flow Synthesis of Carbon Quantum Dots from a Targeted Biomass Precursor for On-Off Metal Ions Nano-Sensing. ACS Sustainable Chemistry & Engineering. 9 (6), pp. 2559-2569. https://doi.org/10.1021/acssuschemeng.0c08594
Ammonia Gas Sensor Response of a Vertical Zinc Oxide Nanorod-Gold Junction Diode at Room Temperature
Tu, Y., Kyle, C., Luo, H., Zhang, D-W., Das, A., Briscoe, J., Dunn, S., Titirici, M-M. and Krause, S. (2020). Ammonia Gas Sensor Response of a Vertical Zinc Oxide Nanorod-Gold Junction Diode at Room Temperature. ACS Sensors. 5 (11), pp. 3568-3575. https://doi.org/10.1021/acssensors.0c01769
Domain Wall Free Polar Structure Enhanced Photodegradation Activity in Nanoscale Ferroelectric Ba x Sr 1‐ x TiO 3
Wang, Y., Zhang, M., Liu, J., Zhang, H., Li, F., Tseng, C.W., Yang, B., Smith, G., Zhai, J., Zhang, Z., Dunn, S. and Yan, H. (2020). Domain Wall Free Polar Structure Enhanced Photodegradation Activity in Nanoscale Ferroelectric Ba x Sr 1‐ x TiO 3. Advanced Energy Materials. 10 (38), p. 2001802. https://doi.org/10.1002/aenm.202001802
Demonstration of Enhanced Piezo-Catalysis for Hydrogen Generation and Water Treatment at the Ferroelectric Curie Temperature
Thuy Phuong, PT, Zhang, Y, Gathercole, N, Khanbareh, H, Hoang Duy, NP, Zhou, X, Zhang, D, Zhou, K, Dunn, S and Bowen, C (2020). Demonstration of Enhanced Piezo-Catalysis for Hydrogen Generation and Water Treatment at the Ferroelectric Curie Temperature. iScience. 23 (5), pp. 101095-101095. https://doi.org/10.1016/j.isci.2020.101095
Thermal Energy Harvesting Using Pyroelectric-Electrochemical Coupling in Ferroelectric Materials
Zhang, Y., Phuong, P.T.T., Roake, E., Khanbareh, H., Wang, Y., Dunn, S. and Bowen, C. (2020). Thermal Energy Harvesting Using Pyroelectric-Electrochemical Coupling in Ferroelectric Materials. Joule. https://doi.org/10.1016/j.joule.2019.12.019
Continuous Hydrothermal Flow Synthesis of Blue-Luminescent, Excitation-Independent Nitrogen-Doped Carbon Quantum Dots as Nanosensors
Baragau, I., Power, N., Morgan, D., Heil, T., Lobo, R., Roberts, C., Titirici, M.M., Dunn, S. and Kellici, S. (2020). Continuous Hydrothermal Flow Synthesis of Blue-Luminescent, Excitation-Independent Nitrogen-Doped Carbon Quantum Dots as Nanosensors. Journal of Materials Chemistry A. (8), pp. 3270-3279. https://doi.org/10.1039/C9TA11781D
Influence of anneal atmosphere on ZnO-nanorod photoluminescent and morphological properties with self-powered photodetector performance
Hatch, SM, Briscoe, J, Sapelkin, A, Gillin, WP, Gilchrist, JB, Ryan, MP, Heutz, S and Dunn, S (2013). Influence of anneal atmosphere on ZnO-nanorod photoluminescent and morphological properties with self-powered photodetector performance. Journal of Applied Physics. 113 (20), pp. 204501-204501. https://doi.org/10.1063/1.4805349
Enhanced performance with bismuth ferrite perovskite in ZnO nanorod solid state solar cells
Loh, L, Briscoe, J and Dunn, S (2014). Enhanced performance with bismuth ferrite perovskite in ZnO nanorod solid state solar cells. Nanoscale. 6 (12), pp. 7072-7078. https://doi.org/10.1039/c4nr00911h
ZnO nanorod surface modification with PDDA/PSS Bi-layer assembly for performance improvement of ZnO piezoelectric energy harvesting devices
Jalali, N, Briscoe, J, Tan, YZ, Woolliams, P, Stewart, M, Weaver, PM, Cain, MG and Dunn, S (2014). ZnO nanorod surface modification with PDDA/PSS Bi-layer assembly for performance improvement of ZnO piezoelectric energy harvesting devices. Journal of Sol-Gel Science and Technology. 73 (3), pp. 544-549. https://doi.org/10.1007/s10971-014-3512-4
Incorporation of Ag nanowires in CuWO 4 for improved visible light-induced photoanode performance
Zhang, H, Yilmaz, P, Ansari, JO, Khan, FF, Binions, R, Krause, S and Dunn, S (2015). Incorporation of Ag nanowires in CuWO 4 for improved visible light-induced photoanode performance. Journal of Materials Chemistry A. 3 (18), pp. 9638-9644. https://doi.org/10.1039/c4ta07213h
Ultra high resolution of PZT 30/70 domains as imaged by PFM
Dunn, S, Shaw, CP, Huang, Z and Whatmore, RW (2002). Ultra high resolution of PZT 30/70 domains as imaged by PFM. Nanotechnology. 13 (4). https://doi.org/https://www.doi.org/10.1088/0957-4484/13/4/303
Plasmon enhanced visible light photocatalysis for TiO 2 supported Pd nanoparticles
Lacerda, AM, Larrosa, I and Dunn, S (2015). Plasmon enhanced visible light photocatalysis for TiO 2 supported Pd nanoparticles. Nanoscale. 7 (29), pp. 12331-12335. https://doi.org/10.1039/c5nr03659c
Effect of Ferroelectricity on Solar-Light-Driven Photocatalytic Activity of BaTiO3? Influence on the Carrier Separation and Stern Layer Formation
Cui, Y, Briscoe, J and Dunn, S (2013). Effect of Ferroelectricity on Solar-Light-Driven Photocatalytic Activity of BaTiO3? Influence on the Carrier Separation and Stern Layer Formation. Chemistry of Materials. 25 (21), pp. 4215-4223. https://doi.org/10.1021/cm402092f
Lithium-induced phase transitions in lead-free Bi0. 5Na0. 5TiO3 based ceramics
Viola, G, McKinnon, R, Koval, V, Adomkevicius, A, Dunn, S and Yan, H (2014). Lithium-induced phase transitions in lead-free Bi0. 5Na0. 5TiO3 based ceramics. The Journal of Physical Chemistry C. 118 (16), pp. 8564-8570. https://doi.org/10.1021/jp500609h
Routes to energy conversion with functional oxide films and nanostructures, a short review
Dunn, S (2015). Routes to energy conversion with functional oxide films and nanostructures, a short review. Thin Solid Films. 601, pp. 59-62. https://doi.org/10.1016/j.tsf.2015.09.064
Bi2Fe4O9 thin films as novel visible-light-active photoanodes for solar water splitting
Wang, Y., Daboczi, M., Mesa, C.A., Ratnasingham, S.R., Kim, J-S., Durrant, J. R., Dunn, S., Yan, H. and Briscoe, J. (2019). Bi2Fe4O9 thin films as novel visible-light-active photoanodes for solar water splitting. Journal of Materials Chemistry A. 16. https://doi.org/10.1039/C8TA09583C
Pyro-electrolytic water splitting for hydrogen generation
Zhang, Y, Kumar, S, Marken, F, Krasny, M, Roake, E, Eslava, S, Dunn, S, Da Como, E and Bowen, CR (2019). Pyro-electrolytic water splitting for hydrogen generation. Nano Energy. 58, pp. 183-191. https://doi.org/10.1016/j.nanoen.2019.01.030
Influence of ferroelectric dipole on the photocatalytic activity of heterostructured BaTiO3/α-Fe2O3
Cui, Y, Sun, H, Briscoe, J, Wilson, R, Tarakina, N, Dunn, S and Pu, Y (2019). Influence of ferroelectric dipole on the photocatalytic activity of heterostructured BaTiO3/α-Fe2O3. Nanotechnology. 30 (25). https://doi.org/10.1088/1361-6528/ab0b00
Pricing and Discounting
Bennett, DR, Scriven, J and Dunn, S (2017). Pricing and Discounting. in: Sharp, B (ed.) Marketing, Theory, Evidence, Practice Australia Oxford University Press (OUP). pp. 300-330
Optimization of 3D ZnO brush-like nanorods for dye-sensitized solar cells
Pace, S, Resmini, A, Tredici, IG, Soffientini, A, Liao, X, Dunn, S, Briscoe, J and Anselmi-Tamburini, U (2018). Optimization of 3D ZnO brush-like nanorods for dye-sensitized solar cells. RSC Advances. 8, pp. 9775-9782. https://doi.org/10.1039/C7RA13128C
Enhanced discharge energy density of rGO/PVDF nanocomposites: The role of the heterointerface
Zhang, Y, Wang, Y, Qi, S, Dunn, S, Dong, H and Button, T (2018). Enhanced discharge energy density of rGO/PVDF nanocomposites: The role of the heterointerface. Applied Physics Letters. 112 (20), pp. 202904-202904. https://doi.org/10.1063/1.5026180
Carbon-Nanodot Solar Cells from Renewable Precursors
Marinovic, A, Kiat, LS, Dunn, S, Titirici, MM and Briscoe, J (2017). Carbon-Nanodot Solar Cells from Renewable Precursors. ChemSusChem. 10 (5), pp. 1004-1013. https://doi.org/10.1002/cssc.201601741
Photoelectrocatalysis of Rhodamine B and solar hydrogen production by TiO2 and Pd/TiO2 catalyst systems
Yilmaz, P, Lacerda, A M, Larrosa, I and Dunn, S (2017). Photoelectrocatalysis of Rhodamine B and solar hydrogen production by TiO2 and Pd/TiO2 catalyst systems. Electrochimica Acta. 231, pp. 641-649. https://doi.org/10.1016/j.electacta.2017.02.035
Enhanced photocatalytic activity of heterostructured ferroelectric BaTiO3/α-Fe2O3 and the significance of interface morphology control
Cui, Y, Briscoe, J, Wang, Y, Tarakina, N V and Dunn, S (2017). Enhanced photocatalytic activity of heterostructured ferroelectric BaTiO3/α-Fe2O3 and the significance of interface morphology control. ACS applied materials & interfaces. 9 (29), pp. 24518-24526. https://doi.org/10.1021/acsami.7b03523
Pyroelectric energy harvesting for water splitting
Xie, M, Dunn, S, Le Boulbar, E and Bowen, C R (2017). Pyroelectric energy harvesting for water splitting. International Journal of Hydrogen Energy. 42 (37), pp. 23437-23445. https://doi.org/10.1016/j.ijhydene.2017.02.086
Bismuth ferrite enhanced ZnO solid state dye-sensitised solar cell
Loh, L, Briscoe, J and Dunn, S (2016). Bismuth ferrite enhanced ZnO solid state dye-sensitised solar cell. Procedia Engineering. 139, pp. 15-21. https://doi.org/10.1016/j.proeng.2015.09.235
Effect of internal electric fields on charge carrier dynamics in a ferroelectric material for solar energy conversion
Morris, MR, Pendlebury, SR, Hong, J, Dunn, S and Durrant, JR (2016). Effect of internal electric fields on charge carrier dynamics in a ferroelectric material for solar energy conversion. Advanced Materials. 28 (33), pp. 7123-7128. https://doi.org/10.1002/adma.201601238
Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics
Le Goupil, F, McKinnon, R, Koval, V, Viola, G, Dunn, S, Berenov, A, Yan, H and Alford, N (2016). Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics. Scientific Reports. 6, p. 28251. https://doi.org/10.1038/srep28251
Structural, Optical and Magnetic Properties of Cu-Doped ZnO Nanoparticles by Co-Precipitation Method
Fabbiyola, S, Kennedy, L J, JudithVijaya, J, Bououdina, M and Dunn, S (2016). Structural, Optical and Magnetic Properties of Cu-Doped ZnO Nanoparticles by Co-Precipitation Method. Journal of Nanoscience and Nanotechnology. 16 (9), pp. 9722-9730. https://doi.org/10.1166/jnn.2016.12094
Acoustic enhancement of polymer/ZnO nanorod photovoltaic device performance
Shoaee, S, Briscoe, J, Durrant, JR and Dunn, S (2013). Acoustic enhancement of polymer/ZnO nanorod photovoltaic device performance. Advanced Materials. 26 (2), pp. 263-268. https://doi.org/10.1002/adma.201303304