BaBi2O6: A Promising n-Type Thermoelectric Oxide with the PbSb2O6 Crystal Structure
Journal article
Spooner, K.B., Ganose, A.M., Leung, W. W. W., Buckeridge, J., Williamson, B., Palgrave, R. and Scanlon, D. (2021). BaBi2O6: A Promising n-Type Thermoelectric Oxide with the PbSb2O6 Crystal Structure. Chemistry of Materials. 33 (18), pp. 7441-7456. https://doi.org/10.1021/acs.chemmater.1c02164
Authors | Spooner, K.B., Ganose, A.M., Leung, W. W. W., Buckeridge, J., Williamson, B., Palgrave, R. and Scanlon, D. |
---|---|
Abstract | Thermoelectric materials offer the possibility of enhanced energy efficiency due to waste heat scavenging. Based on their high-temperature stability and ease of synthesis, efficient oxide-based thermoelectrics remain a tantalizing research goal; however, their current performance is significantly lower than the industry standards such as Bi2Te3 and PbTe. Among the oxide thermoelectrics studied thus far, the development of n-type thermoelectric oxides has fallen behind that of p-type oxides, primarily due to limitations on the overall dimensionless figure of merit, or ZT, by large lattice thermal conductivities. In this article, we propose a simple strategy based on chemical intuition to discover enhanced n-type oxide thermoelectrics. Using state-of-the-art calculations, we demonstrate that the PbSb2O6-structured BaBi2O6 represents a novel structural motif for thermoelectric materials, with a predicted ZT of 0.17–0.19. We then suggest two methods to enhance the ZT up to 0.22, on par with the current best earth-abundant n-type thermoelectric at around 600 K, SrTiO3, which has been much more heavily researched. Our analysis of the factors that govern the electronic and phononic scattering in this system provides a blueprint for optimizing ZT beyond the perfect crystal approximation. |
Keywords | Materials Chemistry; General Chemical Engineering; General Chemistry |
Year | 2021 |
Journal | Chemistry of Materials |
Journal citation | 33 (18), pp. 7441-7456 |
Publisher | American Chemical Society (ACS) |
ISSN | 0897-4756 |
1520-5002 | |
Digital Object Identifier (DOI) | https://doi.org/10.1021/acs.chemmater.1c02164 |
Funder/Client | Engineering and Physical Sciences Research Council |
Publication dates | |
Online | 07 Sep 2021 |
Publication process dates | |
Accepted | 23 Jun 2021 |
Deposited | 22 Sep 2021 |
Accepted author manuscript | License File Access Level Open |
https://openresearch.lsbu.ac.uk/item/8xy46
Download files
164
total views150
total downloads3
views this month1
downloads this month