Deep vs shallow nature of oxygen vacancies and consequent n-type carrier concentrations in transparent conducting oxides

Journal article


Buckeridge, J., Catlow, C.R.A., Farrow, M.R., Logsdail, A.J., Scanlon, D.O., Keal, T.W., Sherwood, P., Woodley, S.M. and Sokol, A.A. (2018). Deep vs shallow nature of oxygen vacancies and consequent n-type carrier concentrations in transparent conducting oxides. Physical Review Materials. 2, p. 054604.
AuthorsBuckeridge, J., Catlow, C.R.A., Farrow, M.R., Logsdail, A.J., Scanlon, D.O., Keal, T.W., Sherwood, P., Woodley, S.M. and Sokol, A.A.
Abstract

The source of n-type conductivity in undoped transparent conducting oxides has been a topic of debate for several decades. The point defect of most interest in this respect is the oxygen vacancy, but there are many conflicting reports on the shallow versus deep nature of its related electronic states. Here, using a hybrid quantum mechanical/molecular mechanical embedded cluster approach, we have computed formation and ionization energies of oxygen vacancies in three representative transparent conducting oxides: In2O3,SnO2, and ZnO. We find that, in all three systems, oxygen vacancies form well-localized, compact donors. We demonstrate, however, that such compactness does not preclude the possibility of these states being shallow in nature, by considering the energetic balance between the vacancy binding electrons that are in localized orbitals or in effective-mass-like diffuse orbitals. Our results show that, thermodynamically, oxygen vacancies in bulk In2O3 introduce states above the conduction band minimum that contribute significantly to the observed conductivity properties of undoped samples. For ZnO and SnO2, the states are deep, and our calculated ionization energies agree well with thermochemical and optical experiments. Our computed equilibrium defect and carrier concentrations, however, demonstrate that these deep states may nevertheless lead to significant intrinsic n-type conductivity under reducing conditions at elevated temperatures. Our study indicates the importance of oxygen vacancies in relation to intrinsic carrier concentrations not only in In2O3, but also in SnO2 and ZnO.

Year2018
JournalPhysical Review Materials
Journal citation2, p. 054604
PublisherAmerican Physical Society
Digital Object Identifier (DOI)doi:10.1103/PhysRevMaterials.2.054604
Web address (URL)https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.2.054604
Publication dates
Print25 May 2018
Publication process dates
Accepted01 Feb 2018
Deposited22 Oct 2019
Accepted author manuscript
License
CC BY 4.0
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/8848x

  • 1
    total views
  • 1
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Related outputs

Equilibrium point defect and charge carrier concentrations in a material determined through calculation of the self-consistent Fermi energy
Buckeridge, J. (2019). Equilibrium point defect and charge carrier concentrations in a material determined through calculation of the self-consistent Fermi energy. Computer Physics Communications. 244, pp. 329-342.
Intrinsic point defects and the n- and p-type dopability of the narrow gap semiconductors GaSb and InSb
Buckeridge, J., Veal, T.D., Catlow, C.R.A. and Scanlon, D.O. (2019). Intrinsic point defects and the n- and p-type dopability of the narrow gap semiconductors GaSb and InSb. Physical Review B. 100, p. 035207.
Electronic band structure and optical properties of boron arsenide
Buckeridge, J. and Scanlon, D.O. (2019). Electronic band structure and optical properties of boron arsenide. Physical Review Materials. 3, p. 051601(R).
Donor and acceptor characteristics of native point defects in GaN
Xie, Z., Sui, Y., Buckeridge, J., Catlow, C.R.A., Keal, T.W., Sherwood, P., Walsh, A., Farrow, M.R., Scanlon, D.O., Woodley, S.M. and Sokol, A.A. (2019). Donor and acceptor characteristics of native point defects in GaN. Journal of Physics D: Applied Physics. 52, p. 335104.
Dispelling the Myth of Passivated Codoping in TiO2
Williamson, B.A.D., Buckeridge, J., Chadwick, N.P., Sathasivam, S., Carmalt, C.J., Parkin, I.P. and Scanlon, D.O. (2019). Dispelling the Myth of Passivated Codoping in TiO2. Chemistry of Materials. 31, pp. 2577-2589.
Anharmonicity in the High-Temperature Cmcm Phase of SnSe: Soft Modes and Three-Phonon Interactions
Skelton, J. M., Burton, L. A., Parker, S. C., Walsh, A., Kim, C.-E., Soon, A., Buckeridge, J., Sokol, A. A., Catlow, C. R. A., Togo, A. and Tanaka, I. (2019). Anharmonicity in the High-Temperature Cmcm Phase of SnSe: Soft Modes and Three-Phonon Interactions. Physical Review Letters. 117, p. 075502.
Oxidation states and ionicity
Walsh, A., Sokol, A.A., Buckeridge, J., Scanlon, D.O. and Catlow, C.R.A. (2018). Oxidation states and ionicity. Nature Materials. 17, p. 958–964.
Prediction of multiband luminescence due to the gallium vacancy–oxygen defect complex in GaN
Xie, Z., Sui, Y., Buckeridge, J., Sokol, A.A., Keal, T.W. and Walsh, A. (2018). Prediction of multiband luminescence due to the gallium vacancy–oxygen defect complex in GaN. Applied Physics Letters. 112, p. 262104.
Defect Engineering of Earth-Abundant Solar Absorbers BiSI and BiSeI
Ganose, A.M., Matsumoto, S., Buckeridge, J. and Scanlon, D.O. (2018). Defect Engineering of Earth-Abundant Solar Absorbers BiSI and BiSeI. Chemistry of Materials. 30, pp. 3827-3835.
Defect formation in In2O3 and SnO2: a new atomistic approach based on accurate lattice energies
Hou, Q., Buckeridge, J., Lazauskas, T., Mora-Fonz, D., Sokol, A.A., Woodley, S.M. and Catlow, C.R.A. (2018). Defect formation in In2O3 and SnO2: a new atomistic approach based on accurate lattice energies. The Journal of Materials Chemistry C. 6, pp. 12386-12395.
Thermodynamically accessible titanium clusters Ti_N, N = 2–32
Lazauskas, T., Sokol, A.A., Buckeridge, J., Catlow, C.R.A., Escher, S.G.E.T., Farrow, M.R., Mora-Fonz, D., Blum, V.W., Phaahla, T.M., Chauke, H.R., Ngoepee, P.E. and Woodley, S.M. (2018). Thermodynamically accessible titanium clusters Ti_N, N = 2–32 . Physical Chemistry Chemical Physics. 20, pp. 13962-13973.
Screening Divalent Metals for A- and B-Site Dopants in LaFeO3
Taylor, F.H., Buckeridge, J. and Catlow, C.R.A. (2017). Screening Divalent Metals for A- and B-Site Dopants in LaFeO3. Chemistry of Materials. 29, pp. 8147-8157.
Electron Counting in Solids: Oxidation States, Partial Charges, and Ionicity
Walsh, A., Sokol, A.A., Buckeridge, J., Scanlon, D.O. and Catlow, C.R.A. (2017). Electron Counting in Solids: Oxidation States, Partial Charges, and Ionicity. The Journal of Physical Chemistry Letters. 8, pp. 2074-2075.
Heterostructures of GaN with SiC and ZnO enhance carrier stability and separation in framework semiconductors
Farrow, M.R., Buckeridge, J., Lazauskas, T., Mora-Fonz, D., Scanlon, D.O., Catlow, C.R.A., Woodley, S.M. and Sokol, A.A. (2017). Heterostructures of GaN with SiC and ZnO enhance carrier stability and separation in framework semiconductors. Physica Status Solidi A. 214, p. 1600440.
Single Step Solution Processed GaAs Thin Films from GaMe3 and tBuAsH2 under Ambient Pressure
Sathasivam, S., Arnepalli, R. R., Bhachu, D. S., Lu, Y., Buckeridge, J., Scanlon, D. O., Kumar, B., Singh, K. K., Visser, R. J., Blackman, C. S. and Carmalt, C. J. Single Step Solution Processed GaAs Thin Films from GaMe3 and tBuAsH2 under Ambient Pressure. The Journal of Physical Chemistry C. 120, pp. 7013-7019.
Bulk electronic, elastic, structural, and dielectric properties of the Weyl semimetal TaAs
Buckeridge, J., Jevdokimovs, D., Catlow, C. R. A. and Sokol, A. A. Bulk electronic, elastic, structural, and dielectric properties of the Weyl semimetal TaAs. Physical Review B. 93, p. 125205.
Demonstration of the donor characteristics of Si and O defects in GaN using hybrid QM/MM
Xie, Z., Sui, Y., Buckeridge, J., Catlow, C.R.A., Keal, T.W., Sherwood, P., Walsh, A., Scanlon, D.O., Woodley, S.M. and Sokol, A.A. (2016). Demonstration of the donor characteristics of Si and O defects in GaN using hybrid QM/MM. Physica Status Solidi A. 214, p. 1600445.
Defects and Oxide Ion Migration in the Solid Oxide Fuel Cell Cathode Material LaFeO3
Taylor, F.H., Buckeridge, J. and Catlow, C.R.A. (2016). Defects and Oxide Ion Migration in the Solid Oxide Fuel Cell Cathode Material LaFeO3. Chemistry of Materials. 28, pp. 8210-8220.
Nonstoichiometry and Weyl fermionic behavior in TaAs
Buckeridge, J., Jevdokimovs, D., Catlow, C.R.A. and Sokol, A.A. (2016). Nonstoichiometry and Weyl fermionic behavior in TaAs. Physical Review B. 94, p. 180101(R).
Engineering Valence Band Dispersion for High Mobility p-Type Semiconductors
Williamson, B.A.D., Buckeridge, J., Brown, J., Ansbrot, S., Palgrave, R.G. and Scanlon, D.O. (2016). Engineering Valence Band Dispersion for High Mobility p-Type Semiconductors. Chemistry of Materials. 29, pp. 2402-2413.
Band gap reduction in InNxSb1-x alloys: Optical absorption, k · P modeling, and density functional theory
Linhart, W.M., Rajpalke, M.K., Buckeridge, J., Murgatroyd, P.A.E., Bomphrey, J.J., Alaria, J., Catlow, C.R.A., Scanlon, D.O., Ashwin, M.J. and Veal, T.D. (2016). Band gap reduction in InNxSb1-x alloys: Optical absorption, k · P modeling, and density functional theory . Applied Physics Letters. 109, p. 132104.
Vibronic Structure in Room Temperature Photoluminescence of the Halide Perovskite Cs3Bi2Br9
Bass, K.K., Estergreen, L., Savory, C.N., Buckeridge, J., Scanlon, D.O., Djurovich, P.I., Bradforth, S.E., Thompson, M.E. and Melot, B.C. (2016). Vibronic Structure in Room Temperature Photoluminescence of the Halide Perovskite Cs3Bi2Br9. Inorganic Chemistry. 56, pp. 42-45.
Efficient and accurate approach to modeling the microstructure and defect properties of LaCoO3
Buckeridge, J., Taylor, F. H. and Catlow, C. R. A. (2016). Efficient and accurate approach to modeling the microstructure and defect properties of LaCoO3. Physical Review B. 93, p. 155123.
Band energy control of molybdenum oxide by surface hydration
Butler, K. T., Crespo-Otero, R., Buckeridge, J., Scanlon, D. O., Bovill, E., Lidzey, D. and Walsh, A. (2015). Band energy control of molybdenum oxide by surface hydration . Applied Physics Letters. 107, p. 231605.
Buckeridge et al. Reply:
Buckeridge, J., Catlow, C. R. A., Scanlon, D. O., Keal, T. W., Sherwood, P., Miskufova, M., Walsh, A., Woodley, S. M. and Sokol, A. A. (2015). Buckeridge et al. Reply: Physical Review Letters. 115, p. 029702.
Polymorph Engineering of TiO2: Demonstrating How Absolute Reference Potentials Are Determined by Local Coordination
Buckeridge, J., Butler, K. T., Catlow, C. R. A., Logsdail, A. J., Scanlon, D. O., Shevlin, S. A., Woodley, S. M., Sokol, A. A. and Walsh, A. (2015). Polymorph Engineering of TiO2: Demonstrating How Absolute Reference Potentials Are Determined by Local Coordination. Chemistry of Materials. 27, pp. 3844-3851.
Morphological Features and Band Bending at Nonpolar Surfaces of ZnO
Mora-Fonz, D., Buckeridge, J., Logsdail, A. J., Scanlon, D. O., Sokol, A. A., Woodley, S. M. and Catlow, C. R. A. (2015). Morphological Features and Band Bending at Nonpolar Surfaces of ZnO. The Journal of Physical Chemistry C. 119, pp. 11598-11611.
Determination of the Nitrogen Vacancy as a Shallow Compensating Center in GaN Doped with Divalent Metals
Buckeridge, J., Catlow, C. R. A., Scanlon, D. O., Keal, T. W., Sherwood, P., Miskufova, M., Walsh, A., Woodley, S. M. and Sokol, A. A. (2015). Determination of the Nitrogen Vacancy as a Shallow Compensating Center in GaN Doped with Divalent Metals. Physical Review Letters. 114, p. 016405.
Crystal electron binding energy and surface work function control of tin dioxide
Butler, K. T., Buckeridge, J., Catlow, C. R. A. and Walsh, A. Crystal electron binding energy and surface work function control of tin dioxide. Physical Review B. 89, p. 115320.
From Stable ZnO and GaN Clusters to Novel Double Bubbles and Frameworks
Farrow, M. R., Buckeridge, J., Catlow, C. R. A., Logsdail, A. J., Scanlon, D. O., Sokol, A. A. and Woodley, S. M. (2014). From Stable ZnO and GaN Clusters to Novel Double Bubbles and Frameworks. Inorganics. 2, pp. 248-263.
N incorporation and associated localized vibrational modes in GaSb
Buckeridge, J., Scanlon, D. O., Veal, T. D., Ashwin, M. J., Walsh, A. and Catlow, C. R. A. (2014). N incorporation and associated localized vibrational modes in GaSb. Physical Review B. 89, p. 014107.
Double bubbles: a new structural motif for enhanced electron–hole separation in solids
Sokol, A. A., Farrow, M. R., Buckeridge, J., Logsdail, A. J., Catlow, C. R. A., Scanlon, D. O. and Woodley, S. M. (2014). Double bubbles: a new structural motif for enhanced electron–hole separation in solids. Physical Chemistry Chemical Physics. 16, pp. 21098-21105.
Understanding doping anomalies in degenerate p-type semiconductor LaCuOSe
Scanlon, D. O., Buckeridge, J., Catlow, C. R. A. and Watson, G. W. (2014). Understanding doping anomalies in degenerate p-type semiconductor LaCuOSe . Journal of Materials Chemistry C. 17, pp. 3429-3438.
Automated procedure to determine the thermodynamic stability of a material and the range of chemical potentials necessary for its formation relative to competing phases and compounds
Buckeridge, J., Scanlon, D. O., Walsh, A. and Catlow, C. R. A. (2014). Automated procedure to determine the thermodynamic stability of a material and the range of chemical potentials necessary for its formation relative to competing phases and compounds. Computer Physics Communications. 185, pp. 330-338.