Flexural analysis and design of stainless steel reinforced concrete beams

Journal article


Rabi, M., Cashell, K. and Shamass, R. (2019). Flexural analysis and design of stainless steel reinforced concrete beams. Engineering Structures. 198, p. 109432.
AuthorsRabi, M., Cashell, K. and Shamass, R.
Abstract

The use of stainless steel reinforcement in concrete structures has increased in recent years, particularly in applications where corrosion and chemical resistance is desirable such as bridges, retaining walls and tunnels. Stainless steel has a wide range of attractive properties including excellent mechanical strength, fire resistance, durability and also a long life-cycle compared with carbon steel. However, it is also has a higher initial cost, and therefore needs to be used carefully and efficiently. The existing material models provided for the structural analysis of reinforced concrete members in current design standards, such as Eurocode 2, are not appropriate for stainless steel reinforced concrete and lead to overly conservative (or indeed unconservative in some cases) predictions of the section capacity. Generally, there is a lack of data in the public domain regarding the behaviour of concrete beams reinforced with stainless steel, mainly owing to this being a relatively new and novel topic. In this context, the current paper provides a detailed background of the existing information on stainless steel reinforced concrete, as well a discussion on the potential advantages and challenges. Then, attention is given to analysing the behaviour of stainless steel reinforced concrete beams by developing the Continuous Strength Method to predict the bending moment capacity. A finite element model has been develop in order to further assess the performance, and this is also used to conduct a parametric study of the most influential properties. It is concluded that the proposed analytical models provides a reliable solution for predicting the capacity of concrete beams reinforced with stainless steel.

Year2019
JournalEngineering Structures
Journal citation198, p. 109432
PublisherElsevier
ISSN0141-0296
Digital Object Identifier (DOI)doi:10.1016/j.engstruct.2019.109432
Web address (URL)https://www.sciencedirect.com/science/article/pii/S0141029619314993?via%3Dihub
Publication dates
Online14 Aug 2019
Print01 Nov 2019
Publication process dates
Accepted22 Jul 2019
Deposited22 Aug 2019
Accepted author manuscript
License
CC BY 4.0
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/87y63

  • 3
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Related outputs

Experimental Investigation on the Behaviour of Recycled Aggregate Concrete
Kovacs, R, Shamass, R, Limbachiya, V and Datoo, M (2019). Experimental Investigation on the Behaviour of Recycled Aggregate Concrete. 5th International Conference on Sustainable Construction Materials & Technologies. Surrey 14 - 17 Jul 2019
Analysis of concrete beams reinforced with stainless steel
Rabi, M, Cashell, KA and Shamass, R (2019). Analysis of concrete beams reinforced with stainless steel. fib Symposium 2019 - Concrete - Inovations in Materials, design and Structures. Krakow, Poland 27 - 29 May 2019 pp. 690-697
Investigation on the Plastic Buckling Paradox for Metal Cylinders
Shamass, R, Alfano, G and Guarracino, F (2018). Investigation on the Plastic Buckling Paradox for Metal Cylinders. in: Buckling and Postbuckling Structures II London South Bank University.
Analysis of Stainless Steel-Concrete Composite Beams
Shamass, R and Cashell, KA (2018). Analysis of Stainless Steel-Concrete Composite Beams. Journal of Constructional Steel Research.
Bending Moment Capacity of Stainless Steel-Concrete Composite Beams
Shamass, R and Cashell, KA (2018). Bending Moment Capacity of Stainless Steel-Concrete Composite Beams. 12th International Conference on Advances in Steel-Concrete Composite Structures (ASCCS 2018). Valencia-Spain 27 - 29 Jun 2018
A numerical investigation into the plastic buckling of circular cylinders
Shamass, R, Alfano, G and Guarracino, F (2013). A numerical investigation into the plastic buckling of circular cylinders. in: Pietraszkiewicz, W and Gorski, J (ed.) Shell Structures: Theory and Application London CRC Press.
Finite-element analysis of shear-off failure of keyed dry joints in precast concrete segmental bridges
Shamass, R, Zhou, X and Alfano, G (2014). Finite-element analysis of shear-off failure of keyed dry joints in precast concrete segmental bridges. Journal of Bridge Engineering. 20 (6).
A numerical investigation into the plastic buckling paradox for circular cylindrical shells under axial compression
Shamass, R, Alfano, G and Guarracino, F (2014). A numerical investigation into the plastic buckling paradox for circular cylindrical shells under axial compression. Engineering Structures. 75, pp. 429-447.
An analytical insight into the buckling paradox for circular cylindrical shells under axial and lateral loading
Shamass, R, Alfano, G and Guarracino, F (2015). An analytical insight into the buckling paradox for circular cylindrical shells under axial and lateral loading. Mathematical Problems in Engineering. 2015.
An investigation into the plastic buckling paradox for circular cylindrical shells under non-proportional loading
Shamass, R, Alfano, G and Guarracino, F (2015). An investigation into the plastic buckling paradox for circular cylindrical shells under non-proportional loading. Thin-Walled Structures. 95, pp. 347-362.
On the elasto-plastic stability analysis of circular cylindrical shells
Shamass, R, Alfano, G and Guarracino, F (2016). On the elasto-plastic stability analysis of circular cylindrical shells. The International Colloquium On Stability And Ductility Of Steel Structures – SDSS 2016. Timisoara, Romania 30 May - 01 Jun 2016 London South Bank University. pp. 639-646
Modelling post-tensioned precast concrete segmental girder bridges with dry keyed joints – preliminary results
Sejkati, E, Zhou, X, Mancini, M and Shamass, R (2016). Modelling post-tensioned precast concrete segmental girder bridges with dry keyed joints – preliminary results. 9th International Concrete Conference 2016: Environment, Efficiency and Economic Challenges for Concrete. Dundee, Scotland 04 - 06 Jul 2016 London South Bank University.
Numerical analysis of shear-off failure of keyed epoxied joints in precast concrete segmental bridges
Shamass, R, Zhou, X and Wu, Z (2016). Numerical analysis of shear-off failure of keyed epoxied joints in precast concrete segmental bridges. Journal of Bridge Engineering. 22 (1).
On Elastoplastic Buckling Analysis of Cylinders under Nonproportional Loading by Differential Quadrature Method
Shamass, R, Alfano, G and Guarracino, F (2017). On Elastoplastic Buckling Analysis of Cylinders under Nonproportional Loading by Differential Quadrature Method. International Journal of Structural Stability and Dynamics. 17 (7).
Behaviour of Composite Beams Made Using High Strength Steel
Shamass, R and Cashell, KA (2017). Behaviour of Composite Beams Made Using High Strength Steel. Structures. 12, pp. 88-101.