Numerical analysis of shear-off failure of keyed epoxied joints in precast concrete segmental bridges

Journal article


Shamass, R, Zhou, X and Wu, Z (2016). Numerical analysis of shear-off failure of keyed epoxied joints in precast concrete segmental bridges. Journal of Bridge Engineering. 22 (1).
AuthorsShamass, R, Zhou, X and Wu, Z
Abstract

© 2016 American Society of Civil Engineers. Precast concrete segmental box girder bridges (PCSBs) are becoming increasingly popular in modern bridge construction. The joints in PCSBs are of critical importance, which largely affects the overall structural behavior of PCSBs. The current practice is to use unreinforced small epoxied keys distributed across the flanges and webs of a box girder cross section forming a joint. In this paper, finite-element analysis was conducted to simulate the shear behavior of unreinforced epoxied joints, which are single keyed and three keyed to represent multikeyed epoxied joints. The concrete damaged plasticity model along with the pseudodamping scheme was incorporated to analyze the key assembly for microcracks in the concrete material and to stabilize the solution, respectively. In numerical analyses, two values of concrete tensile strength were adapted: one using a Eurocode formula and one using the general assumption of tensile strength of concrete as 10%f cm . The epoxy was modeled as linear elastic material because the tensile and shear strength of the epoxy were much higher than those of the concrete. The numerical model was calibrated by full-scale experimental results from literature. Moreover, it was found that the numerical results of the joints, such as ultimate shear load and crack initiation and propagation, agreed well with experimental results. Therefore, the numerical model associated with relevant parameters developed in this study was validated. The numerical model was then used for a parametric study on factors affecting shear behavior of keyed epoxied joints, which are concrete tensile strength, elastic modulus of epoxy, and confining pressure. It has been found that the tensile strength of concrete has a significant effect on the shear capacity of the joint and the displacement at the ultimate load. A linear relationship between the confining pressure and the shear strength of single-keyed epoxied joints was observed. Moreover, the variation in the elastic modulus of epoxy does not affect the ultimate shear strength of the epoxied joints when it is greater than 25% of the elastic modulus of concrete. Finally, an empirical formula published elsewhere for assessing the shear strength of single-keyed epoxied joints was modified, based on the findings of this research, to be an explicit function of the tensile strength of concrete.

Keywords0905 Civil Engineering; Civil Engineering
Year2016
JournalJournal of Bridge Engineering
Journal citation22 (1)
PublisherLondon South Bank University
ISSN1084-0702
Digital Object Identifier (DOI)doi:10.1061/(ASCE)BE.1943-5592.0000971
Publication dates
Print02 Sep 2016
Publication process dates
Deposited06 Dec 2017
Accepted15 Jun 2016
Accepted author manuscript
License
CC BY 4.0
Permalink -

https://openresearch.lsbu.ac.uk/item/8726y

  • 2
    total views
  • 14
    total downloads
  • 1
    views this month
  • 7
    downloads this month

Related outputs

Experimental Investigation on the Behaviour of Recycled Aggregate Concrete
Kovacs, R, Shamass, R, Limbachiya, V and Datoo, M (2019). Experimental Investigation on the Behaviour of Recycled Aggregate Concrete. 5th International Conference on Sustainable Construction Materials & Technologies. Surrey 14 - 17 Jul 2019
Flexural analysis and design of stainless steel reinforced concrete beams
Rabi, M., Cashell, K. and Shamass, R. (2019). Flexural analysis and design of stainless steel reinforced concrete beams. Engineering Structures. 198, p. 109432.
Analysis of concrete beams reinforced with stainless steel
Rabi, M, Cashell, KA and Shamass, R (2019). Analysis of concrete beams reinforced with stainless steel. fib Symposium 2019 - Concrete - Inovations in Materials, design and Structures. Krakow, Poland 27 - 29 May 2019 pp. 690-697
Investigation on the Plastic Buckling Paradox for Metal Cylinders
Shamass, R, Alfano, G and Guarracino, F (2018). Investigation on the Plastic Buckling Paradox for Metal Cylinders. in: Buckling and Postbuckling Structures II London South Bank University.
Analysis of Stainless Steel-Concrete Composite Beams
Shamass, R and Cashell, KA (2018). Analysis of Stainless Steel-Concrete Composite Beams. Journal of Constructional Steel Research.
Bending Moment Capacity of Stainless Steel-Concrete Composite Beams
Shamass, R and Cashell, KA (2018). Bending Moment Capacity of Stainless Steel-Concrete Composite Beams. 12th International Conference on Advances in Steel-Concrete Composite Structures (ASCCS 2018). Valencia-Spain 27 - 29 Jun 2018
A numerical investigation into the plastic buckling of circular cylinders
Shamass, R, Alfano, G and Guarracino, F (2013). A numerical investigation into the plastic buckling of circular cylinders. in: Pietraszkiewicz, W and Gorski, J (ed.) Shell Structures: Theory and Application London CRC Press.
Finite-element analysis of shear-off failure of keyed dry joints in precast concrete segmental bridges
Shamass, R, Zhou, X and Alfano, G (2014). Finite-element analysis of shear-off failure of keyed dry joints in precast concrete segmental bridges. Journal of Bridge Engineering. 20 (6).
A numerical investigation into the plastic buckling paradox for circular cylindrical shells under axial compression
Shamass, R, Alfano, G and Guarracino, F (2014). A numerical investigation into the plastic buckling paradox for circular cylindrical shells under axial compression. Engineering Structures. 75, pp. 429-447.
An analytical insight into the buckling paradox for circular cylindrical shells under axial and lateral loading
Shamass, R, Alfano, G and Guarracino, F (2015). An analytical insight into the buckling paradox for circular cylindrical shells under axial and lateral loading. Mathematical Problems in Engineering. 2015.
An investigation into the plastic buckling paradox for circular cylindrical shells under non-proportional loading
Shamass, R, Alfano, G and Guarracino, F (2015). An investigation into the plastic buckling paradox for circular cylindrical shells under non-proportional loading. Thin-Walled Structures. 95, pp. 347-362.
On the elasto-plastic stability analysis of circular cylindrical shells
Shamass, R, Alfano, G and Guarracino, F (2016). On the elasto-plastic stability analysis of circular cylindrical shells. The International Colloquium On Stability And Ductility Of Steel Structures – SDSS 2016. Timisoara, Romania 30 May - 01 Jun 2016 London South Bank University. pp. 639-646
Modelling post-tensioned precast concrete segmental girder bridges with dry keyed joints – preliminary results
Sejkati, E, Zhou, X, Mancini, M and Shamass, R (2016). Modelling post-tensioned precast concrete segmental girder bridges with dry keyed joints – preliminary results. 9th International Concrete Conference 2016: Environment, Efficiency and Economic Challenges for Concrete. Dundee, Scotland 04 - 06 Jul 2016 London South Bank University.
On Elastoplastic Buckling Analysis of Cylinders under Nonproportional Loading by Differential Quadrature Method
Shamass, R, Alfano, G and Guarracino, F (2017). On Elastoplastic Buckling Analysis of Cylinders under Nonproportional Loading by Differential Quadrature Method. International Journal of Structural Stability and Dynamics. 17 (7).
Behaviour of Composite Beams Made Using High Strength Steel
Shamass, R and Cashell, KA (2017). Behaviour of Composite Beams Made Using High Strength Steel. Structures. 12, pp. 88-101.