Numerical analysis of shear-off failure of keyed epoxied joints in precast concrete segmental bridges
Journal article
Shamass, R, Zhou, X and Wu, Z (2016). Numerical analysis of shear-off failure of keyed epoxied joints in precast concrete segmental bridges. Journal of Bridge Engineering. 22 (1). https://doi.org/10.1061/(ASCE)BE.1943-5592.0000971
Authors | Shamass, R, Zhou, X and Wu, Z |
---|---|
Abstract | © 2016 American Society of Civil Engineers. Precast concrete segmental box girder bridges (PCSBs) are becoming increasingly popular in modern bridge construction. The joints in PCSBs are of critical importance, which largely affects the overall structural behavior of PCSBs. The current practice is to use unreinforced small epoxied keys distributed across the flanges and webs of a box girder cross section forming a joint. In this paper, finite-element analysis was conducted to simulate the shear behavior of unreinforced epoxied joints, which are single keyed and three keyed to represent multikeyed epoxied joints. The concrete damaged plasticity model along with the pseudodamping scheme was incorporated to analyze the key assembly for microcracks in the concrete material and to stabilize the solution, respectively. In numerical analyses, two values of concrete tensile strength were adapted: one using a Eurocode formula and one using the general assumption of tensile strength of concrete as 10%f cm . The epoxy was modeled as linear elastic material because the tensile and shear strength of the epoxy were much higher than those of the concrete. The numerical model was calibrated by full-scale experimental results from literature. Moreover, it was found that the numerical results of the joints, such as ultimate shear load and crack initiation and propagation, agreed well with experimental results. Therefore, the numerical model associated with relevant parameters developed in this study was validated. The numerical model was then used for a parametric study on factors affecting shear behavior of keyed epoxied joints, which are concrete tensile strength, elastic modulus of epoxy, and confining pressure. It has been found that the tensile strength of concrete has a significant effect on the shear capacity of the joint and the displacement at the ultimate load. A linear relationship between the confining pressure and the shear strength of single-keyed epoxied joints was observed. Moreover, the variation in the elastic modulus of epoxy does not affect the ultimate shear strength of the epoxied joints when it is greater than 25% of the elastic modulus of concrete. Finally, an empirical formula published elsewhere for assessing the shear strength of single-keyed epoxied joints was modified, based on the findings of this research, to be an explicit function of the tensile strength of concrete. |
Keywords | 0905 Civil Engineering; Civil Engineering |
Year | 2016 |
Journal | Journal of Bridge Engineering |
Journal citation | 22 (1) |
Publisher | American Society of Civil Engineers (ASCE) |
ISSN | 1084-0702 |
Digital Object Identifier (DOI) | https://doi.org/10.1061/(ASCE)BE.1943-5592.0000971 |
Publication dates | |
02 Sep 2016 | |
Publication process dates | |
Deposited | 06 Dec 2017 |
Accepted | 15 Jun 2016 |
Accepted author manuscript | License File Access Level Open |
https://openresearch.lsbu.ac.uk/item/8726y
Download files
Accepted author manuscript
Numerical Analysis of Shear-off Failure of Keyed Epoxied Joints in Precast-Concrete Segmental Bridges.docx | ||
License: CC BY 4.0 | ||
File access level: Open |
164
total views152
total downloads0
views this month0
downloads this month