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Abstract  

The use of stainless steel reinforcement in concrete structures has increased in recent years, 

particularly in applications where corrosion and chemical resistance is desirable such as 

bridges, retaining walls and tunnels. Stainless steel has a wide range of attractive properties 

including excellent mechanical strength, fire resistance, durability and also a long life-cycle 

compared with carbon steel. However, it is also has a higher initial cost, and therefore needs to 

be used carefully and efficiently. The existing material models provided for the structural 

analysis of reinforced concrete members in current design standards, such as Eurocode 2, are 

not appropriate for stainless steel reinforced concrete and lead to overly conservative (or 

indeed unconservative in some cases) predictions of the section capacity. Generally, there is a 

lack of data in the public domain regarding the behaviour of concrete beams reinforced with 

stainless steel, mainly owing to this being a relatively new and novel topic. In this context, the 

current paper provides a detailed background of the existing information on stainless steel 

reinforced concrete, as well a discussion on the potential advantages and challenges.  Then, 

attention is given to analysing the behaviour of stainless steel reinforced concrete beams by 

developing the Continuous Strength Method to predict the bending moment capacity. A finite 

element model has been develop in order to further assess the performance, and this is also 

used to conduct a parametric study of the most influential properties. It is concluded that the 

proposed analytical models provides a reliable solution for predicting the capacity of concrete 

beams reinforced with stainless steel.  

Keywords: Stainless steel reinforcement, reinforced concrete, design methods, numerical 
modelling, continuous strength method, flexural behaviour.  

1. Introduction 

Stainless steel is widely used for load-bearing applications in structural engineering, largely 

owing to its excellent corrosion resistance. In addition to durability, it has a long life-cycle, 
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excellent mechanical characteristics, good formability and recyclability and requires little 

maintenance. Stainless steel offers excellent ductility and strain hardening capacity compared 

with traditional carbon steel, which is particularly desirable in design as a ductile section 

provides warning of imminent collapse. These distinctive properties depend on the constituent 

elements of the stainless steel alloy, and therefore it is important to select the appropriate grade 

for each application. One of the most important chemical elements in all stainless steel alloys is 

chromium which provides the corrosion resistance through the formation of a thin chromium 

oxide film on the surface of the material in the presence of oxygen, resulting in a passive 

protective layer [1].  

The earliest use of stainless steel in construction was in the 1920’s, for roofing and facade 

applications [2]. In more recent times, stainless steels have become popular in load-bearing 

applications where the durability, ductility, stiffness and strength are required, as well as 

excellent fire resistance. Stainless steels are produced in different forms including sheet, plate, 

bar, tube, hot-rolled and cold-formed structural sections, fasteners and fixings. Cold-formed 

sections fabricated from steel plates are the most commonly used products for structural 

members because they are the most readily available and are reasonably straight-forward to 

manufacture [3].   

There are five main categories of stainless steel which are classified according to their 

metallurgical structure, including the austenitic, ferritic, duplex, martensitic and precipitation 

hardened grades. The austenitic and duplex grades are most common in structural applications, 

including for stainless steel reinforcement. Austenitic stainless steels comprise 17-18% 

chromium and offer very good corrosion resistance, while the duplex grades comprise 22-23% 

chromium and have even greater strength and corrosion resistance. The characteristic 

mechanical behaviour of stainless steel is quite different from that of carbon steel in that it does 

not have the typical yield plateau which is found in carbon steel and also exhibits a 

predominantly non-linear response with significant strain hardening and high ductility. 

Extensive research into the behaviour of structural stainless steel has been reported in the 

literature including the flexural behaviour (e.g. [4-6]), compressive behaviour (e.g. [7-9]) and 

the mechanical characteristics (e.g. [10, 11]). 

Although there has been extensive research in recent years into the behaviour of structural 

stainless steel, most of this has been on bare stainless steel sections, rather than reinforced 

concrete, which is the focus of the current work. Reinforced concrete (RC) structures are widely 

used for a range of applications such as multi-storey buildings, tunnels and bridges owing to the 

efficient use and ready availability of the constituent materials. There are increasing demands to 
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improve the life-cycle cost of these types of structure because of the high maintenance costs 

associated with corrosion of the steel reinforcement and carbonation and deterioration of the 

concrete. This is particularly true for structures subjected to harsh environments such as in 

marine, coastal or industrial settings. In this context, the use of stainless steel reinforcement in 

exposed structures like bridges, retaining walls and tunnels can provide an ideal solution to the 

deterioration and corrosion problems. This may even result in the structure not requiring 

expensive inspection and rehabilitation works over its lifetime.  Stainless steel reinforcement 

can also be used for the restoration and rehabilitation of existing concrete structures [12].  

It is clear that one of the fundamental advantages of using stainless steel reinforcement in 

concrete structures is its ability to enhance the durability. For structures reinforced with 

traditional carbon steel and subjected to aggressive conditions, corrosion is difficult to avoid. 

The typical approach to improving the durability of RC structures is to change some of the 

design parameters such as the thickness of the concrete cover or to control the alkalinity of the 

concrete mix [13]. However, in aggressive conditions, these measures may not be enough to 

prevent unacceptable levels of corrosion developing. The initial cost of stainless steel 

reinforcing bars is relatively high, typically between 4 and 8 times than that of traditional 

carbon steel rebar, depending on the grade. In spite of this, it has been shown that stainless steel 

reinforcement can reduce the overall maintenance costs during the service life by up to 50%, 

especially for bridges and marine structures [14, 15].  There is a need for a more detailed 

analysis of the life-cycle costs and savings that using stainless steel reinforced concrete may 

offer, relative to carbon steel.  

Current design codes such as Eurocode 2 do not incorporate an efficient approach for designing 

structures with stainless steel reinforcement as the given material models for the reinforcement 

do not fully exploit the significant strain hardening characteristics and high levels of ductility 

that are present for stainless steel. Given the high initial cost of stainless steel, it is imperative 

that structurally efficient design solutions are made available which consider and exploit the 

distinctive and advantageous properties of stainless steel. The Continuous Strength Method 

(CSM) has been developed in recent years to improve the efficiency and accuracy of design. The 

CSM was originally developed for stainless steel sections [16] but has been developed in recent 

years to assess composite beams [17, 18]. In the current paper, the main objective is to develop 

the CSM for stainless steel reinforced concrete sections, exploiting the strain hardening 

characteristics of the rebars, and to further analyse the behaviour through finite element 

modelling. 
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2. Concrete structures with stainless steel reinforcement 

It is now recognised that reinforced concrete with carbon steel reinforcement may not be as 

durable in all conditions as was previously assumed [19]. In harsh environments such as marine 

or coastal locations, corrosion of carbon steel reinforcement can result in very expensive, 

challenging and inconvenient rehabilitation works. In this context, stainless steel reinforcement 

offers a durable and efficient alternative. One of the earliest examples of the use of stainless 

steel reinforcement is the Progresso Pier in Mexico, as shown in Fig. 1, which was constructed in 

the early 1940’s using grade 1.4301 austenitic stainless steel. It has been in continuous service 

for over 70 years without any major repair or significant maintenance activities. The benefits of 

using stainless steel rebar are quite starkly visible in this image as, in the foreground, the 

remains of a carbon steel reinforced concrete pier are evident. This was built many years after 

the stainless steel reinforced concrete pier, but is clearly no longer in service.  

Stainless steel reinforcement has also been used in a number of other projects, including 

Stonecutters Bridge in Hong Kong and Sheik Zayed Bridge in Abu Dhabi, as shown in Fig. 2 and 

Fig. 3, respectively. These two bridges are reinforced with grade 1.4462 duplex stainless steel. 

Because of the relatively high initial cost, the stainless steel rebars are strategically placed and 

only used for the outer layer of the reinforcement in both projects, in the so-called splash zone. 

Grade 1.4436 stainless steel was used in the Highnam bridge widening project in the UK as well 

as the Broadmeadow Bridge in Ireland.  One of the most high profile and recent applications of 

stainless steel rebar is in the Queensferry Crossing in Scotland which opened in 2017.  As well 

as new construction, stainless steel reinforcement has also been used for renovation and 

restoration purposes. For example, austenitic grade 1.4301 stainless steel rebar was used to 

rehabilitate the pillars and stone arches of the Knucklas Rail Bridge [20].  

 

Fig. 1: The Progresso Pier in Mexico [21]. 
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Fig. 2: Stonecutters Bridge in Hong Kong [22]. 

 

Fig. 3: Sheik Zayed Bridge in Abu Dhabi [23]. 

In the design of reinforced concrete beams, Eurocode 2 assumes that the compression forces are 

resisted entirely by the concrete whereas the steel reinforcement carries the tension. The 

tensile strength of concrete is difficult to measure accurately and represents only about 10% of 

the compressive strength, so its contribution is usually ignored. Fig. 4 shows (a) a typical simple 

RC cross-section together with the corresponding (b) strain and (c and d) stress distributions, 

as assumed in Eurocode 2. In these figures, b and h are the width and depth of the beam, 

respectively, and y and d are the locations of the neutral axis and steel reinforcement from the 

top fibre of the beam, respectively. The strain in the concrete at the outer fibre is εc whereas εs is 

the reinforcement strain, and fc and σs are the compressive stress of the concrete and tensile 

stress in the reinforcement, respectively. The failure mechanisms considered are either 

crushing of the concrete (i.e. when the strain at the outer fibre of the concrete reaches the 

ultimate crushing strain) or yielding of the reinforcement (i.e. when the strain in the steel 

reinforcement reaches its yield value). In accordance with the stress blocks presented in 

Fig. 4(d), any contribution to the load capacity after the steel yield strength has been reached, is 

not considered in design. Currently, the majority of global design standards including Eurocode 
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2 do not fully exploit strain hardening of the reinforcement in the plastic design of RC 

structures. Although this assumption is acceptable for carbon steel reinforced concrete, it can 

give inaccurate predictions when stainless steel reinforcement is used since it exhibits very 

different stress-strain behaviour in that it is nonlinear from an early stage and develops 

significant levels of strain hardening. For this reason, designing stainless steel RC structures 

using the existing design rules is neither efficient nor reflective of the real behaviour. It is in this 

context that the current work is undertaken and a new approach for the design of reinforced 

concrete structures with stainless steel rebar is developed. 

 

 

Fig. 4: Strain and stress distribution diagrams for a singly reinforced concrete beam including (a) 
the cross-section (b) the strain distribution through the section, (c) the stress distribution and 
(d) an equivalent stress distribution in the section, simplifying the concrete stress block. 

3. Design of stainless steel reinforced concrete beams  

3.1. Background to the Continuous Strength Method 

The Continuous Strength Method (CSM) is a deformation-based design method which has been 

developed in recent years to enable material strain hardening properties to be exploited, thus 

resulting in more accurate capacity predictions and more efficient design. The CSM was 

originally developed for the design of stainless steel members with non-slender cross-sections 

[16]. Since then, it has been extended many times to cover the design of structural members 

made from stainless steel (e.g. [9, 24]), carbon steel (e.g.  [17, 25-27]), aluminium [28] and high 

strength steel [29].  In recent years, the method has been adapted for composite construction 

including carbon steel-concrete composite beams [17] and stainless steel-concrete composite 

members with either a full and partial shear connection [18]. The CSM is based on replacing 

traditional cross-section classification with an assessment of the deformation capacity of the 

section, using a realistic material model. As such, the method predicts the cross-sectional 
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resistance of the member depending on two main components: (1) a base curve that defines the 

relationship between the limiting strain at the ultimate load and the cross-section slenderness, 

and (2) a material model that allows for strain hardening [30].   

In the current paper, a similar approach is adopted to develop a deformation-based design 

method for reinforced concrete beams with stainless steel rebar, allowing for the true stainless 

steel constitutive relationship. This is developed in two forms, first as a full model in which the 

whole material response is captured and then as a simplified model incorporating a more 

simplistic elastic-linear hardening stainless steel constitutive response.  

3.2. Material model  

The full and simplified version of the proposed CSM design model use two different material 

models for representing the stainless steel reinforcement. As stated previously, the stress-strain 

behaviour of stainless steel is quite different from that of carbon steel. Carbon steel has a linear 

elastic response with a well-defined yield point and yield plateau, followed by a moderate 

degree of strain hardening. On the other hand, stainless steel exhibits a predominantly non-

linear and continuous stress-strain response without a clearly-defined yield point as well as 

significant levels of strain hardening. In the absence of a visible yield point, the typical value 

adopted is the 0.2% proof stress (σ0.2) which is determined by drawing a line with a slope equal 

to the elastic modulus (E) between 0.2% strain on the x-axis and the stress-strain curve.  

The full CSM analysis employs the modified Ramberg-Osgood stainless steel material model [10, 

11, 31], as depicted in Fig. 5. This uses the original expression proposed by Ramberg–Osgood 

[10], as presented in Eq. 1, to define the stress-strain relationship of stainless steel up to the 

proof stress followed by Eq. 2 [11, 31] for greater levels of stress. 

ε =
σ
E

+ 0.002 �
σ
σ0.2

�
n

 (1) 

ε = ε0.2 + σ−σ0.2
E2

+ �εu − ε0.2 −
σu−σ0.2

E2
� � σ−σ0.2

σu−σ0.2
�
m

   for    σ0.2 < σ ≤ σu (2) 

In these expressions, ε and σ are the engineering strain and stress, respectively, E2 is the tangent 

modulus at the 0.2% proof stress point, σu and εu are the ultimate stress and corresponding 

strain, respectively, ε0.2 is the strain corresponding to σ0.2 and n and m are model constants 

related to the strain hardening behaviour.  
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Fig. 5: The simplified material model for stainless steel with reference to the modified R-O 

model. 

The simplified CSM employs a bilinear, elastic-linear hardening stress-strain relationship for the 

stainless steel rebar, as shown in Fig. 5, in order to avoid the need to solve complex nonlinear 

equations. In this approach, the yield point is identified as the 0.2% proof stress and the 

corresponding yield strain (i.e. σ0.2 and εy = σ0.2
E

,  respectively). The slope of the strain 

hardening region (Esh) is obtained from the line passing through the yield point (εy, σ0.2) and the 

defined ultimate point (C2εu, σu), as defined in Eq. 3. It has been found that a value of 0.15 is an 

appropriate value for the constant C2 in the current work, in agreement with previous CSM 

developments [9].  

Esh =
σu − σ0.2

C2εu − εy
 (3) 

3.3. Flexural capacity of stainless steel reinforced concrete beams  

3.3.1 Full analytical model 

In this section, the continuous strength method (CSM) is developed to analyse the behaviour of 

stainless steel reinforced concrete beams, using the modified Ramberg-Osgood relationship 

described in Eqs. 1 and 2 to model the rebars. The plastic bending moment capacity is obtained 

by locating the neutral axis (NA) and then applying the equilibrium of internal force equations 

to the cross-section of the beam. In order to idealise the behaviour, the following assumptions 

are made in the analytical model, in accordance with Eurocode 2: 

[1] The nominal ultimate strain of the concrete (εcu) is assumed to be 0.0035 for material 

with a compressive strength less than 50 N/mm2, otherwise it is determined using Eq. 4: 
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εcu = 2.6 + 35[(98 − fc)/100]4 (4) 

[2] As presented in Fig. 4 (d), an equivalent rectangular stress distribution is assumed for 

the concrete in compression. The effective strength of the concrete is 0.85fc, where fc is 

the compressive strength of the concrete, and the effective height of the compression 

zone is 0.8y, where y is the distance from the NA to the top fibre of the cross-section.   

The material model for stainless steel given in Eqs. 1 and 2 provides strain as a function of 

stress. However, in order to implement the material model in conjunction with the design 

method, it is necessary to identify the stress as a function of strain, which requires a numerical 

procedure. In the current work, the approximate inversion relationship proposed by Abdella 

[32] for the full stress-strain relationship of stainless steel is employed to describe the stress (σ) 

as an explicit function of strain (ε), as presented in the Eqs. 5 and 6: 

σ1(ε) = σ0.2
r � ε

ε0.2
�

1+(r−1)� ε
ε0.2

�
p                           for    ε ≤ ε0.2 (5) 

 

σ2(ε) = σ0.2

⎣
⎢
⎢
⎢
⎡
1 +

r2 � ε
ε0.2

−1�

1+(r∗−1) �
ε

ε0.2
−1

εu
ε0.2

−1
�
p∗

⎦
⎥
⎥
⎥
⎤
        for ε > ε0.2 (6) 

where the material parameters are: 

ε0.2 =
σ0.2

E
+ 0.002 r =

E ε0.2

σ0.2
  

E2 =
E

1 + 0.002 n/e
 p = r

1 − r2
r − 1

 

e =
σ0.2

E
 m = 1 + 3.5

σ0.2

σu
 

σu = σ0.2
1 − 0.0375(n − 5)

0.2 + 185e
 Eu =

E2
1 + (r∗ − 1)m

 

r2 =
E2 ε0.2

σ0.2
 ru =

Eu(εu − ε0.2)
σu − σ0.2

 

εu = min (1 − σ0.2
σu

, A)  p∗ = r∗
1 − ru
r∗ − 1
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r∗ =
E2(εu − ε0.2)
σu − σ0.2

 
 

In these expressions, A is the stainless steel elongation, E2 and Eu are the slope of the stress-

strain curve at ε0.2 and εu, respectively, and r, r2, r*, ru, p, p* and m are parameters that need to 

be determined. 

For calculating the bending moment capacity of a singly reinforced beam, there are two possible 

cases. Case 1 is when the tensile strain of the reinforcement is less than the total strain 

corresponding to σ0.2 (i.e. εs ≤ ε0.2) and Case 2 is when the tensile strain of the reinforcement is 

greater than the total strain corresponding to σ0.2 (i.e. εs > ε0.2). The internal tensile and 

compressive forces in the cross-section are calculated based on the full stainless steel stress-

strain material model and the equivalent rectangular compressive stress distribution in the 

concrete, together with the strain distribution in the section. In order to determine the tensile 

stress in the reinforcement at failure of the beam, the strain can be calculated from the strain 

distribution in Fig. 4 (b), as follows: 

εs = κ(d − y)                       (7) 

κ = min(κsu, κcu) (8) 

where κsu is the limiting curvature for stainless steel failure and κcu is the limiting curvature for 

concrete failure (i.e. when the strain at the top fibre of the beam reaches the ultimate strain of 

concrete). There are two possible failure models, defined by κsu and κcu. If  κsu < κcu, the beam 

fails due to rupture of the stainless steel reinforcement whereas if  κsu > κcu, the reinforced beam 

fails due to concrete crushing. The values of κsu and κcu are determined as: 

κsu =
εu

d − y
   

κcu =
εcu
y

  

 

(9) 

From equilibrium of the internal forces in the beam, the sum of the tensile forces (Ft) and the 

compression forces (Fc) must equal zero: 

Fc − Ft = 0    (10) 

The tension force is determined as the product of the steel area (As) and the stress in the 

stainless steel (σs): 
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Ft = Asσs (11) 

and the compression force is found using the equivalent rectangular stress block presented in 

Fig. 4 (d), to give: 

Fc = 0.85fc(0.8y)b (12) 

Substituting Eq. 12 and Eq. 11 into Eq. 10 gives: 

0.68fcy b − Asσs = 0               or  

y =
Asσs

0.68fc b
 (13) 

When the stainless steel strain is less than ε0.2 (i.e. εs ≤ ε0.2), the tensile stress in the 

reinforcement at d is determined by substituting Eq. 7 into Eq. 5 to give: 

σs = σ1(y) = σ0.2
r �κ(d−y)

ε0.2
�

1+(r−1)�κ(d−y)
ε0.2

�
p            

(14) 

which can be used together with Eq. 13 to obtain y, the depth of the neutral axis measured from 

the top fibre of the beam. Since the stress σ1(y) is a nonlinear function of the variable y, Eq. 13 

and Eq. 14 create a nonlinear problem which must be solved using an iterative method. Once 

the position of the neutral axis, y, is located, the assumption of εs ≤ ε0.2 must be checked by 

calculating the strain in the stainless steel using Eq. 7. If the assumption is correct, the plastic 

bending moment capacity of the beam is calculated by taking moments about the position that 

the compressive internal force in the concrete acts, as follows: 

Mpl = Asσs(d − 0.4y) (15) 

where σs is the tensile stress in the stainless steel calculated from Eq. 14 and corresponding to 

the obtained neutral axis depth, y. 

If the stainless steel strain is higher than the strain corresponding to σ0.2 (i.e. εs > ε0.2), the 

tensile stress of the reinforcement can be obtained by substituting Eq. 7 into Eq. 6 to give: 

σs = σ2(y) = σ0.2

⎣
⎢
⎢
⎢
⎢
⎡

1 +
r2 �κ(d−y)

ε0.2
−1�

1+(r∗−1) �
κ(d−y)
ε0.2

−1
εu
ε0.2

−1
�

p∗

⎦
⎥
⎥
⎥
⎥
⎤

    

 

(16) 
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The position of the neutral axis (y) can then be obtained, as before, using the equilibrium of 

internal forces (i.e. Eq. 13) and substituting the tensile stress obtained from Eq. 16 into Eq. 13. 

Once the position of neutral axis is known, the plastic bending capacity is calculated by taking 

moments about the position of the compression force, and is given in the Eq. 15. As before, σs is 

the tensile stress in the stainless steel calculated from Eq. 16 and corresponding to the 

calculated value of y. A flow chart presenting the full procedure for determining the neutral axis 

and the plastic bending moment capacity is given in Fig. 6. 

 

Fig. 6: Flow chart of the solution procedure for a singly reinforced concrete beam. 

3.3.2 Simplified analytical model   

In the previous section, a detailed analytical solution was presented to predict the plastic 

bending moment capacity of stainless steel reinforced concrete beams, incorporating the full 

stress-strain behaviour of the stainless steel material. This method involves a solution of 

complex nonlinear equations requiring iterative methods to obtain the position of the neutral 

axis, which may not be a straightforward procedure for designers. Therefore, in this current 
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section, a simplified analytical solution is developed based on a simpler material model for the 

stainless steel, as described in Section 3.2 and Fig. 5. The other initial assumption in the 

simplified model is that the section always fails due to concrete crushing (i.e. κsu > κcu), which is 

a legitimate assumption generally for reinforced concrete beams, and even more so for those 

reinforced with stainless steel rebar owing to its ductility. Hence, the tensile strain of the 

reinforcement at the failure of the section is determined from the strain distribution in Fig. 4 (b) 

as follows:  

εs = εcu
y

 (d − y)   (17) 

The tensile stress of the stainless steel can be calculated from the simplified material model 

presented in Fig. 5, in accordance with Eqs 18 and 19 hereafter: 

σs = Eεs εs ≤ εy (18) 

σs = σ0.2 + Esh(εs − εy) εs > ε𝑦𝑦 (19) 

There are two possible cases for prediction of the bending moment capacity of reinforced beam. 

Case 1 is when the tensile strain of the reinforcement is less than the yield strain (i.e. εs ≤ εy) 

and Case 2 is when the tensile strain of the reinforcement is higher than the yield strain (i.e. εs >

εy). For Case 1, when the strain in the stainless steel is less than εy (i.e. εs ≤ εy), the tensile 

stress in the reinforcement at  d is determined by substituting Eq. 17 into Eq. 18 to give: 

σs = E εcu
y

 (d − y)   (20) 

which can be used together with Eq. 13 to give: 

0.68fc y b − AsE εcu
y

 (d − y) = 0                (21) 

This can be simplified to Eq. 22: 

0.68fcby2 + A𝑠𝑠εcuEy − AsεcudE = 0 (22) 

Once the position of the neutral axis (y) is located by solving this quadratic equation, the 

assumption of εs ≤ εy must be checked by calculating the strain in the stainless steel using Eq. 

17. If the assumption is correct, the plastic bending moment capacity of the beam is calculated 

by taking moments about the position of the compressive internal force in the concrete using 

Eq. 15 where σs is the tensile stress in the stainless steel calculated from Eq. 20. 
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If the stainless steel strain is higher than the yield strain (i.e. εs > εy), the tensile stress of the 

reinforcement can be obtained by substituting Eq. 17 into Eq. 19 to give: 

σs = σ0.2 + Esh  �εcu
y

 (d − y) − εy�   (23) 

As before, the position of the neutral axis is located using the equilibrium of the internal forces 

by substituting the tensile stress obtained from Eq. 23 into Eq. 13 to give: 

 0.68fcy b − As �σ0.2 + Esh  �εcu
y

 (d − y) − εy�� = 0                
(24) 

This can simplified, as follows: 

0.68fcb y2 + �Eshεcu + Eshεy − σ0.2�As y − AsEshεcud = 0 (25) 

Once the position of the neutral axis is located using Eq. 25, the plastic bending moment 

capacity is calculated as given in Eq. 15 where σs is the tensile stress in the stainless steel 

calculated from Eq. 23. In both cases, the assumption of κsu > κcu must be checked to ensure that 

the beam section fails due to concrete crushing.   

In the case that the limiting curvature for stainless steel is less than that of the concrete 

(i.e. κsu >κcu), the beam fails due to the rupture of stainless steel reinforcement, which should be 

very rare in reality. In this scenario, the tensile strain of the reinforcement at failure of the 

section is its ultimate tensile strain, as given in Eq. 26:  

εs = εu (26) 

The tensile stress of the stainless steel is determined by substituting Eq. 26 in to Eq. 19 to give: 

σs = σ0.2 + Esh(εu − εy)  (27) 

As before, the position of the neutral axis is located by applying the equilibrium of internal 

forces criteria, and substituting the tensile stress obtained from Eq. 27 into Eq. 13 to give: 

0.68fcy b − As�σ0.2 + Esh(εu − εy)� = 0    (28) 

Again, once the position of the neutral axis is located using Eq. 28, the plastic bending moment 

capacity is calculated as given in Eq. 15 where σs is the tensile stress in the stainless steel 

calculated from Eq. 27.           
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4. Development of the finite element model 

A finite element model has been developed using the general purpose finite-element analysis 

software Abaqus [33] in order to examine the analytical design model described in the previous 

section, and to conduct further parametric studies.   Abaqus offers a number of different 

solution strategies for complex nonlinear problems and in the current work, an implicit 

dynamic solution procedure is selected. This can be used efficiently for quasi-static applications 

and has been shown to provide better convergence behaviour than the modified Riks method 

for arrangements like those considered herein [34]. In the model, the concrete elements are 

represented using 3D eight-node hexahedral elements which are known as C3D8 in the Abaqus 

library whereas the reinforcement is simulated using 2-node beam elements (B3). The 

reinforcement is embedded in the concrete and the translational degrees of freedom at each 

node of the reinforcement are constrained to the interpolated values of the corresponding 

degrees of freedom of the concrete element [33]. A mesh sensitivity study has been conducted 

to select the most appropriate mesh size and it was found that elements which are 15 mm3 in 

size are the most appropriate in terms of achieving both computational accuracy and efficiency. 

For relatively small beams, a smaller element size of 10 mm3 is used.  

4.1. Material behaviour  

4.1.1. Concrete  

A number of concrete material models are available in Abaqus including the smeared crack 

concrete model and the concrete damage plasticity (CDP) model. The former is based on 

reducing the stiffness of concrete elements when the stresses exceed the maximum tensile 

stress, while the latter considers the inelastic behaviour of concrete by defining damage factors 

in both compression and tension. The CDP model is selected in this study for simulating the 

concrete behaviour as it is more desirable in applications where the concrete is subject to static 

loads and has been used widely for similar applications in the literature [e.g. 35-38].  

The CDP model as shown in Fig. 7 is based on continuum damage mechanics and considers two 

failure modes, namely cracking of the concrete in tension and crushing in compression. The 

material behaviour is defined in terms of the elastic, plastic, compressive and tensile properties.  

In the current work, Poisson’s ratio and density of concrete are taken as 0.15 and 2400 kg/m3, 

respectively. For the compression behaviour, the model given in Eurocode 2 [39] is adopted, 

given as:  
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σc = �
kη − η2

1 + (k − 2)η
� fcm for 0 ≤ εc ≤ εcu1 (29) 

In this expression, ɛcu1 is the nominal ultimate strain and fcm is the ultimate compressive 

strength of concrete (in MPa), given by:  

fcm = fck + 8 (30) 

where fck is the characteristic cylinder strength. The parameters k and η are determined from Eqs. 

31 and 32, respectively: 

k = 1.05Ecm
εc1
fcm

 (31) 

η =
εc
εc1

 (32) 

in which Ecm is the elastic modulus of concrete (in MPa) and ɛc1 is the strain at the peak stress, 

determined from Eqs. 33 and 34:  

Ecm = 22(0.1fcm)0.3            (33) 

εc1 = 0.7(fcm)0.31 ≤ 2.8 (34) 

The nominal ultimate strain (ɛcu1), as a percentage, is given by:  

εcu1 = 2.8 + 27[(98 − fcm)/100]4     for      fck ≥ 50 N/mm2,  otherwise  3.5 (35) 

The CDP model requires the compressive damage parameter (dc) to be defined at each inelastic 

strain increment, ranging from 0, for un-damaged material, to 1, when the concrete completely 

loses its load-bearing capacity. As shown in Fig. 7, this parameter is calculated for the 

descending branch of the stress-strain curve of concrete in compression as follows: 

dc = 0 for εc < εc1 

(36) 
dc =

fcm − σc
fcm

 for εc ≥ εc1 
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Fig. 7: CDP model for concrete in compression [33].  

In tension, the concrete stress-strain behaviour is modelled as a linear relationship up to the 

ultimate tensile strength (εcr) followed by a gradually descending branch, which inherently 

incorporates the effects of tension stiffening (Fig. 8). The effect of the bond between the rebar 

and the concrete is approximated within this tension stiffening branch.  Tension stiffening 

refers to the phenomenon whereby concrete continues to carry some tensile load even after 

cracking has taken place, though the tensile strength gradually decreases with increasing tensile 

strain.  This is captured within the descending branch of the concrete stress-strain model which, 

in Abaqus, can be described using a linear, bilinear or nonlinear relationship. In this study, the 

power stress-strain relationship proposed by Wang and Hsu [40] is employed for the 

descending branch, as described in Fig. 8 and presented in Eq. 37. This nonlinear formula has 

also been used by other researchers in the literature [e.g. 41, 42]:  

σt = Ecmεt if εt ≤ εcr 

(37) 
σt = ft(

εcr
εt

)0.4  if εt > εcr 

The tensile strength (ft) can be obtained as follows [39]: 

ft = 0.3(fck)2/3 (38) 
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Fig. 8: Post-failure stress-strain relationship proposed by [40]. 

In addition to the compressive and tensile constitutive relationships, a number of other 

parameters are required in the CDP model. The eccentricity, ratio of the strength in the biaxial 

state to the strength in the uniaxial state (fb0/fc0), parameter K, and viscosity parameter are 

obtained from Abaqus manual [33] and set as 0.1, 1.16, 0.667, and 0, respectively, whereas the 

dilation angle is selected based on a sensitivity study and set as 36°. 

4.1.2. Stainless steel reinforcement  

The stainless steel material is represented in the model using the modified Ramberg-Osgood 

model described earlier and presented in Fig. 5. As stainless steel does not exhibit a clearly 

defined yield point, the 0.2% proof stress is used to define the yield stress. The stress-strain 

relationships described in Eqs. 1 and 2 are employed to model the stainless steel constitutive 

relationship in Abaqus.  

Abaqus requires that the material properties are specified in terms of true stress (σtrue) and 

strain (εtrue) which can be derived from the engineering stress-strain curves as follows: 

σtrue = σ(1 + ε) 

εtrue = ln (1 + ε) 

(39) 

4.2. Boundary and loading conditions    

The beam model is designed to simulate a four-point bending test arrangement where the loads 

are applied through a 3 cm wide surface in displacement control. There are pinned boundary 

conditions and therefore the beam ends are restrained against vertical displacement but allow 

movement at the other degrees of freedom. As the beam is symmetrical about both its 

longitudinal axis and along the length, it is only necessary to model a quarter of the beam, and use 
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symmetrical boundary conditions along the length and also around the x- and z-axis at the mid-

span to reduce the computational time and cost.  

5. Validation of the finite model 

5.1. Experimental results for validation 

The FE model is validated using five reinforced concrete beams from different experimental 

programmes, as presented in Table 1. Beams SS and B3 were reinforced with austenitic and 

duplex stainless steel rebars in grade 1.4311 and 1.4362, respectively. As these are the only two 

stainless steel reinforced concrete beam tests which have been found in the literature, three 

other beams containing carbon steel reinforcement are also included in the validation exercise 

for additional robustness. The details of geometry and reinforcement of these beams are shown 

in Fig. 9.  

 

 

 (a) 

 

 
(b) 

  

 
(c) 
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(d) 

 

 
(e) 

Fig. 9: Geometrical and reinforcement details of the beams used in the validation study, 
including (a) B3 [43] (b) SS [44], (c) SR6 [45], (d) U2 [46] and (e) O [47].   

All of the beams were tested under monotonic loading, in displacement control. Beams B3, SR6 

and O were loaded continuously until failure. On the other hand, beam U2 was loaded until 

cracking occurred and then unloaded to zero before being reloaded up to failure. Beam SS was 

subjected to loading up to 80 kN before the test was stopped (the reason for stopping the test at 

this point is not known but it was possibly owing to the test machine capacity being reached). 

Table 1 presents the material properties of the concrete and the reinforcement for each of these 

beams, as provided in the literature. The elastic modulus and tensile strength of the concrete 

can be calculated using Eq. 33 and Eq. 38, respectively, for beams where this data was not 

provided. For beam SS, the exponent of 0.4 in Eq. 37 is changed to 0.3 in order to obtain better 

depiction of the experimental response. This is most likely because this grade of stainless steel 

reinforcement has a different bond relationship with the surrounding concrete compared with 

carbon steel rebar.   
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Table 1: Material properties of the RC beams reported by [43-47].   

Beam 

Reinforcement Concrete 

Material 
Diameter 

(mm) 

Young’s 

modulus 

E 

(kN/mm2) 

Yield 

strength 

σ0.2  

(N/mm2) 

Ultimate 

strength 

σu 

(N/mm2) 

Young’s 

modulus 

Ecm 

(N/mm2) 

Compressive 

strength 

fck 

(N/mm2) 

B3 

Duplex 

stainless Steel 

1.4362 

8 189 1003 1066 
Not 

provided 

26.6 

(cylinder) 

SS 

Austenitic 

stainless steel 

1.4311 

20 177 480 773 37.6 
50.0 

(cylinder) 

SR6 Carbon steel 14 200 410 
Not 

provided 

Not 

provided 

31.3       

(cube) 

U2 Carbon steel 12 205 380 
Not 

provided 
26.0 

19.4       

(cube) 

O Carbon steel 12 209 507 
Not 

provided 

Not 

provided 

30.0 

(cylinder) 

5.2. Load-displacement response 

Fig. 10 presents the load-displacement curves obtained for beams SS, SR6, U2 and O from the FE 

model, together with the corresponding experimental data. Fig. 11 presents the moment-

displacement curve for beam B3, as this is the manner in which the experimental data is 

published [43]. With reference to Fig. 10, it is observed that the model presents an excellent 

depiction of the overall behaviour in all cases. The key features such as initial stiffness, cracking 

point, and ultimate strength are in very good agreement. For all of the beams, the initial stiffness 

of the beams is slightly greater in the FE model data compared with the experimental response, 

most likely due to some localised cracking in the experiment which is not captured in the 

numerical simulations. For beam U2, the loading-unloading-reloading path is reasonably well 

simulated by the model although there is some disparity between the residual displacements 

(i.e. the displacements when the applied load returns to zero following the unloading phase) 

predicted (around 3.9 mm) and those that occurred in the test (1.53 mm). This is possibly due 

to differences in the way that the tensile behaviour of concrete is represented in the model, 

compared with the experimental performance.  
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Fig. 10: Comparison between experimental and numerical load-displacement curves for beams 
SS [44], SR6 [45], U2 [46] and O [47]. 

The results for Beam B3 presented in Fig. 11 demonstrate that the FE model captures the ultimate 

moment quite well, with the disparity between the model predictions and the experimental data 

being around 2%. However, the stiffness response obtained numerically is greater than occurred 

during the experiment, which is most likely due to localised cracking again that is not captured 

exactly by the model. Nevertheless, in conclusion, a good agreement has been shown between the 

numerical load-displacement response and the experimental data. 
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Fig. 11: Comparison between experimental and numerical moment-displacement curves for 
beam B3 [43]. 

5.3. Crack pattern 

Fig. 12(a) and (b) show the crack patterns obtained numerically and experimentally, respectively, 

for beam SR6 at the ultimate load, which occurred at a displacement of 3.7 mm (it is noteworthy 

that the FE model captures the opposite side of the beam than that is represented in Fig. 12(b)). 

This beam is selected for demonstration purposes and similar comparisons have been found for 

all of the other beams in this validation study, where the data is available in the literature. In the 

legend for Fig. 12(a), the term “PE Max Principle” as outputted by Abaqus refer to the tensile 

plastic strain values in the concrete which represent tensile cracks in the beam. In the FE analysis, 

two cracks develop in the constant-moment region (i.e. the region between the middle of the 

beam and the application of the point load), comprising a large crack near the middle of the beam 

and another under the applied load. In addition, a number of cracks merge into one large diagonal 

crack in the high shear region (i.e. the area between the support and the application of the point 

load). Similarly, in the experimental image, one vertical crack formed in the constant-moment 

region, another short crack occurred below the applied load and a diagonal crack developed in 

the high shear region. 
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(a) 

 

 

(b) 

Fig. 12: Crack patterns of beam SR6 obtained by the (a) numerical analysis and (b) experiment 
[45]. 

Fig. 13 and 14 present the crack patterns obtained numerically for the beams SS and B3, 

respectively, which are the beams reinforced with stainless steel; the experimental patterns are 

not included in the literature for these beams. With reference to beam SS, it is observed that a 

large number of cracks developed, which are well distributed along the length of the beam. On 

the other hand, in Fig. 14 for beam B3, it is shown that two cracks developed in the constant 

moment region, one crack beneath the load point and four cracks in the shear region. The fewer 

number of cracks in this case, compared with SS, are mainly due to the shorter member length. 
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Fig. 13: Crack patterns of beam SS obtained numerically. 

 

Fig. 14: Crack patterns of beam B3 obtained numerically. 

On the basis of data presented in this and previous sections, it is concluded that the FE model 

developed in this study is capable of providing a good prediction of the behaviour of stainless 

steel and carbon steel RC beams in terms of the ultimate load, load-displacement response and 

crack propagation. There are some very small differences in terms of initial bending stiffness, but 

this is most likely due to localised cracking in the test which cannot be accurately assessed in the 

numerical model. 

6. Validation of the proposed analytical models 

Both the full and simplified analytical models described previously are validated herein using the 

FE model, by comparing the predicted bending capacities. In order to obtain a robust validation, 

both of the reinforced concrete beams which included stainless steel rebar, i.e. SS and B3, are 

studied. A number of different concrete strengths are used in the analysis (i.e. C26, C30, C40, C50). 

Additionally, three different grades of stainless steel are investigated using the data presented by 

Gardner et al. [48], which is presented in Table 2. It is noteworthy that the steels are listed giving 

their European designation (i.e. 1.4XXX) as well as the commonly used AISI names, in brackets. 

Additionally, both beams B3 and SS are selected for further analysis in which a number of 

different geometric properties are varied, in order to assess their influence on the response. 

These parameters are detailed in Table 3.  
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Table 2: Material properties of stainless steel reinforcement included in the study [48]. 

Stainless 

steel type 
Grade 

Bar 

diameter 

(mm) 

σ0.2 

(N/mm2) 

σu 

(N/mm2) 

E       

(kN/mm2) 

εu   

(%) 
n m 

Austenitic 
1.4311 

(304LN) 
12 480 764 203 38.6 4.7 4.8 

Lean 

duplex 

1. 4162 

(LDX2101) 
12 682 874 199 20.4 5.3 5.0 

Austenitic 
1.4307 

(304L) 
12 562 796 210 30.7 4.7 4.8 

 

Table 3: Range of geometrical parameters included in the study. 

b (mm) d (mm) Bar diameter (mm) 

100-150 125-255 8-12 

 

Tables 4 and 5 present the bending moment capacity obtained from the proposed full analytical 

method (MAM), the simplified analytical method (MSM) and the numerical analysis (MFE) as well as 

the values determined using the design method provided in Eurocode 2 (MEC2), for beam SS and 

B3, respectively. In the Eurocode calculation, it is assumed that the stainless steel material model 

is elastic-perfectly plastic. In addition, the bending moment capacity predicted using both the full 

and the simplified analytical solutions are presented together in Fig. 15. This figure also includes 

the equation for the tendency of the data, as well as the R2 (coefficient of determistaintion). Based 

on the data in these tables and Fig. 15, the following general observations are made: 

• An excellent agreement is obtained between the numerical analysis and the proposed full 

analytical method in almost all cases, with the maximum and average MAM/MFE values 

being -19% and -15.6%, respectively, for beam SS and -13% and -4.3%, respectively, for 

beam B3. These same values using the Eurocode 2 design rules (MEC2/MFE) are --37% and 

-28.8% for SS and -18% and -2.7% for B3. Clearly, the full analytical design method, based 

on determination of limiting deformations, provides more accurate and realistic moment 

capacities.  

• For beam SS (Table 4) the full analytical method underestimates the bending moment 

capacity in all cases, similarly for beam B3 (Table 5), the predicted analytical results are 

below the numerical results in all cases, except two values. 
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• For beam SS, it can be seen that the proposed full analytical method improves the bending 

capacity of the section in average by around 13.2% compared to the current design 

approach in EC2 whilst no improvement is found for beam B3. In the latter case, the 

relatively lower prediction using the analytical model rather than existing design rules in 

some cases is due to the fact that the stresses in the rebar are lower than their proof stress, 

as shown by the values presented in Table 6, when the beam reaches to the maximum 

loading capacity. Therefore, these beams were not designed to exploit the strain 

hardening qualities of the stainless steel as concrete failure dominates. With reference to 

Fig. 15, it is observed that the predictions of the bending moment capacity obtained using 

the simplified analytical solution are in very good agreement with those obtained using 

full analytical solution. In all cases, the simplified predictions fluctuate above and below 

the prediction of the full analytical model. Therefore, it is concluded that the simplified 

solution is adequate for predicting the bending moment capacity for stainless steel RC 

beams. 

By implementing these proposed analytical solutions for the design of concrete beams reinforced 

with stainless steel, the distinctive strain hardening properties of stainless steel are exploited, 

thus improving the capacity and ductility of the beams in design. It is unlikely that the full strain 

hardening capacity of stainless steel would be utilised in real structures as failure by concrete 

crushing is likely to develop first. Nevertheless, the results presented in Tables 4 and 5 illustrate 

the capability of the proposed methods for providing a more accurate and efficient bending 

moment capacity over a wide range of concrete strengths and stainless steel grades, compared to 

the traditional design method. 
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Table 4: Comparison between the ultimate bending moment capacity of the numerical and that 
of the analytical analysis for beam SS. 

Stainless 

steel grade 

Bar 

diameter 

(mm) 

Concrete 

grade 

MEC2 

(kNm) 

MAM 

(kNm) 

MFE 

(kNm) 

MSM 

(kNm) 

MEC2 / 

MFE (%) 

MAM / 

MFE (%) 

 

1.4311 

(304LN) 

 

12 

30 26.15 31.95 39.56 30.20 -33.89 -19.23 

40 26.53 33.44 41.11 32.25 -35.47 -18.67 

50 26.76 34.49 42.20 34.04 -36.59 -18.27 

 

1. 4162 

(LDX2101) 

 

12 

30 36.23 40.01 45.79 39.35 -20.88 -12.62 

40 37.00 41.78 47.21 41.88 -21.63 -11.51 

50 37.47 42.92 48.37 44.01 -22.54 -11.27 
 

1.4307 

(304L) 

 

12 

30 30.30 35.13 42.36 33.76 -28.48 -17.07 
40 30.83 36.66 43.71 35.88 -29.47 -16.13 

50 31.15 37.69 44.87 37.70 -30.58 -16.01 

Average value -28.8 -15.6 

Correlation coefficient  0.952 0.995 

 

 

Table 5: Comparison between the ultimate bending moment capacity of the numerical and that 
of the analytical analysis for beam B3. 

Stainless 

steel grade 

Diameter 

(mm) 

Concrete 

grade 

MEC2 

(kNm) 

MAM 

(kNm) 

MFE 

(kNm) 

MSM 

(kNm) 

MEC2 / 

MFE (%) 

 

MAM / 

MFE (%) 

1.4362 

(AIS 2304) 

 

8 

26.6 10.45 9.79 11.12 10.45 -6.03 -11.92 

40 11.61 11.84 12.32 11.68 -5.76 -3.90 

1.4311 

(304LN) 

 

12 

26.6 11.51 11.37 11.54 11.65 -0.26 -1.49 

40 12.38 13.50 15.11 12.94 -18.06 -10.64 

1. 4162 

(LDX2101) 

 

12 

26.6 13.11 12.33 11.43 13.11 14.70 7.88 

40 16.55 15.98 17.32 16.69 -4.43 -7.73 

1.4307 

(304L) 
12 

26.6 12.95 11.98 11.22 12.98 15.42 6.81 

40 14.15 14.78 17.02 14.52 -16.86 -13.16 

Average value -2.7 -4.3 

Correlation coefficient 0.768 0.923 
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Table 6: Rebar stresses compared to their proof stresses for beam B3. 

Grade of 

stainless 

steel 

Reinforcement 

diameter  

(mm) 

Concrete 

grade 

Stress in the 

reinforcement 

(N/mm2) 

Reinforcement 

proof strength 

(N/mm2) 

1.4362 

(AIS 2304) 
8 

26.6 879.88 1003 

40 1023.88 1003 

1.4311 

(304LN) 
12 

26.6 472.79 480 

40 529 480 

1. 4162 

(LDX2101) 
12 

26.6 525.63 682 

40 652.72 682 

1.4307 

(304L) 
12 

26.6 505.74 562 

40 590.24 562 

 

  

Fig. 15: Comparison between the results obtained using the full and simplified analytical 
solution. 

7. Conclusions 

This paper has presented a detailed study into the behaviour of stainless steel reinforcement in 

concrete structures. A strong case was presented for why stainless steel can provide a legitimate 

solution for some of the most common and expensive challenges associated with concrete 

infrastructure, i.e. degradation of the steel reinforcement. Stainless steel is a very ductile material 

that has distinctive characteristics such as corrosion and fire resistance, durability and 

sustainability. There are two main barriers to more widespread use of stainless steel rebar in 

construction. Firstly, there is a perception amongst engineers that it is prohibitively expensive. 
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Although stainless steel is undoubtedly more expensive than carbon steel in terms of initial costs, 

over the life time of a structure if maintenance and rehabilitation works can be avoided through 

the use of more durable materials, then stainless steel provides a very competitive and efficient 

design option. This is certainly an area that warrants a more detailed analysis, once efficient 

design rules have been established. Secondly, there is a huge dearth of useful design data and 

guidance to assist engineers in the specification of stainless steel reinforced concrete. Current 

design codes such as Eurocode 2 do not include specific guidance for stainless steel and therefore 

ignore the significant strain hardening characteristics and high levels of ductility that it offers. 

This design approach provides inaccurate strength capacity predictions. Therefore, the current 

study implements the Continuous Strength Method into the design of RC beams including full and 

simplified approach which incorporates the distinctive characteristic of stainless steel in design 

of reinforced concrete beams reinforced stainless steel. The FE model is developed and validated 

using the available data in the literature. Then, it is used to validate the proposed analytical 

solution and to generate a parametric study. The key influential parameters are analysed and it 

is shown that the full and simplified analytical solutions provide a reliable means for predicting 

the capacity of beam.  These equations can be used by engineers wishing to include stainless steel 

reinforced concrete in their designs, without the inefficiencies of existing methods. 

References  

[1] Evans, K. (2002) 'RB Rebak in Corrosion Science–A Retrospective and Current Status in 

Honor of Robert P', Frankenthal, PV, 13, pp. 344-354.  

[2] Baddoo, N.R. (2008) 'Stainless steel in construction: A review of research, applications, 

challenges and opportunities', Journal of Constructional Steel Research, 64(11), pp. 

1199-1206.  

[3] Gardner, L. (2005) 'The use of stainless steel in structures', Progress in Structural 

Engineering and Materials, 7(2), pp. 45-55.  

[4] Yang, L., Zhao, M., Xu, D., Shang, F., Yuan, H., Wang, Y. and Zhang, Y. (2016) 'Flexural 

buckling behaviour of welded stainless steel box-section columns', Thin-Walled 

Structures, 104, pp. 185-197.00 

[5] Hassanein, M. and Silvestre, N. (2013) 'Flexural behavior of lean duplex stainless steel 

girders with slender unstiffened webs', Journal of Constructional Steel Research, 85, pp. 

12-23. 

[6]  Wang, Y., Yang, L., Gao, B., Shi, Y. and Yuan, H. (2014) 'Experimental study of lateral-

torsional buckling behavior of stainless steel welded I-section beams', International 

Journal of Steel Structures, 14(2), pp. 411-420. 



31 
 

[7] Gardner, L. and Theofanous, M. (2008) 'Discrete and continuous treatment of local 

buckling in stainless steel elements', Journal of Constructional Steel Research, 64(11), 

pp. 1207-1216.  

[8] Huang, Y. and Young, B. (2014) 'Design of cold-formed lean duplex stainless steel 

members in combined compression and bending', Journal of Structural Engineering, 

141(5), pp. 04014138. 

[9]  Afshan, S. and Gardner, L. (2013) 'The continuous strength method for structural 

stainless steel design', Thin-Walled Structures, 68, pp. 42-49. 

[10] Ramberg, W. and Osgood, W.R. (1943) 'Description of stress-strain curves by three 

parameters', Issue 902 of National Advisory Committee for Aeronautics Technical Note. 

[11] Rasmussen, K.J.R. (2003) 'Full-range stress–strain curves for stainless steel alloys', 

Journal of Constructional Steel Research, 59(1), pp. 47-61.  

[12] Pérez-Quiroz, J., Terán, J., Herrera, M., Martínez, M. and Genescá, J. (2008) 'Assessment 

of stainless steel reinforcement for concrete structures rehabilitation', Journal of 

Constructional Steel Research, 64(11), pp. 1317-1324.  

[13] British Highways Authority (2003) 'Advice note: Design manual for roads and bridges 

BA84/02:" The use of stainless steel reinforcement in highway structures’. Available at: 

https://www.bssa.org.uk/cms/File/REBar%20report.pdf (Accessed: 5 March 2019). 

[14] Cramer, S., Covino, B., Bullard, S., Holcomb, G., Russell, J., Nelson, F., Laylor, H. and 

Soltesz, S. (2002) 'Corrosion prevention and remediation strategies for reinforced 

concrete coastal bridges', Cement and Concrete Composites, 24(1), pp. 101-117.  

[15] Briz, E., Biezma, M. and Bastidas, D. (2018) 'Stress corrosion cracking of new 2001 

lean–duplex stainless steel reinforcements in chloride contained concrete pore solution: 

An electrochemical study', Construction and Building Materials, 192, pp. 1-8. 

[16] Gardner L., Nethercot D.A. (2004) ‘Structural stainless steel design: a new 

approach’. Journal of Structural Engineering, 82(21),pp. 21-30.  

[17] Gardner, L., Yun, X., Macorini, L. and Kucukler, M. (2017) 'Hot-rolled steel and steel-

concrete composite design incorporating strain hardening', Structures, 9, pp. 21-28. 

[18] Shamass, R. and Cashell, K.A., (2018) 'Analysis of Stainless Steel-Concrete Composite 

Beams', Journal of Constructional Steel Research, 152, pp. 132-142. 

[19] British Stainless Steel Association. (2003) ‘The use of stainless steel reinforcement on 

bridges’. Available at: http://www.bssa.org.uk/cms/File/REBar%20report.pdf 

(Accessed: 11 April 2017).  

[20] McGurn, J. (1998) 'Stainless steel reinforcing bars in concrete', Proceedings of the 

International Conference of Corrosion and Rehabilitation of Reinforced Concrete 

Structures, Orlando, FL, FHWA.  

https://www.bssa.org.uk/cms/File/REBar%20report.pdf


32 
 

[21] Nickel Institute (2018) 'Progreso pier built with nickel-containing stainless steel'. 

Available at: 

https://www.nickelinstitute.org/media/2541/progresopierrepackagefb.pdf (Accessed: 

11/04 2019). 

[22] Thousandswonder. (2015) Stonecutters Bridge. Available at: 

http://www.thousandwonders.net/Stonecutters+Bridge (Accessed: 10 April 2017). 

[23] Edvardsen, C. (2008) 'Tailor-made concrete structures–Case studies from projects 

worldwide'. Available at: 

http://www.abece.com.br/web/restrito/restrito/pdf/ch011.pdf (Accessed: 5 March 

2017). 

[24] Ashraf, M., Gardner, L. and Nethercot, D.A. (2008) 'Structural stainless steel design: 

resistance based on deformation capacity', Journal of Structural Engineering, 134(3), pp. 

402-411.  

[25] Gardner, L. (2008) 'The continuous strength method', Proceedings of the Institution of 

Civil Engineers - Structures and Buildings, 161(3), pp. 127-133. 

[26] Gardner, L., Wang, F. and Liew, A. (2011) 'Influence of strain hardening on the behavior 

and design of steel structures', International Journal of Structural Stability and 

Dynamics, 11(05), pp. 855-875.  

[27] Liew, A. and Gardner, L. (2015) 'Ultimate capacity of structural steel cross-sections 

under compression, bending and combined loading', Structures, 1, pp. 2-11. 

[28] Su, M., Young, B. and Gardner, L. (2016) 'The continuous strength method for the 

design of aluminium alloy structural elements', Engineering Structures, 122, pp. 338-

348. 

[29]  Lan, X., Chen, J., Chan, T. and Young, B. (2018) 'The continuous strength method for the 

design of high strength steel tubular sections in compression', Engineering Structures, 

162, pp. 177-187. 

[30] Theofanous, M., Propsert, T., Knobloch, M. and Gardner, L. (2016) 'The continuous 

strength method for steel cross-section design at elevated temperatures', Thin-Walled 

Structures, 98, pp. 94-102. 

[31] Mirambell, E. and Real, E. (2000) 'On the calculation of deflections in structural 

stainless steel beams: an experimental and numerical investigation', Journal of 

Constructional Steel Research, 54(1), pp. 109-133. 

[32]  Abdella, K. (2006) 'Inversion of a full-range stress–strain relation for stainless steel 

alloys', International Journal of Non-Linear Mechanics, 41(3), pp. 456-463. 

https://www.nickelinstitute.org/media/2541/progresopierrepackagefb.pdf


33 
 

[33] Dassault Systèmes. (2016) Abaqus user’s Guide Manual [Computer program]. 

http://dixon:2080/texis/search/?query=concrete+material&group=bk&CDB=v2016&s

ubmit.x=0&submit.y=0 .  

[34] Shamass, R. and Cashell, K. (2017) 'Behaviour of Composite Beams Made Using High 

Strength Steel', Structures, 12, pp. 88-101. 

[35] Earij, A., Alfano, G., Cashell, K. and Zhou, X. (2017) ‘Nonlinear three–dimensional finite–

element modelling of reinforced–concrete beams: Computational challenges and 

experimental validation’, Engineering Failure Analysis, 82, pp. 92-115.. 

[36] George, J., Rama, J.K., Kumar, M.S. and Vasan, A. (2017) 'Behavior of Plain Concrete 

Beam subjected to Three Point Bending using Concrete Damaged Plasticity (CDP) 

Model', Materials Today: Proceedings, 4(9), pp. 9742-9746 

[37] Fan, S., Tan, K.H. and Nguyen, M.P. (2018) 'Numerical Model to Determine Shear 

Capacity of Reinforced Concrete Deep Beams Exposed to Fire', in High Tech Concrete: 

Where Technology and Engineering Meet. Springer, pp. 1410-1419. 

[38] Solhmirzaei, R. and Kodur, V. (2017) 'Modeling the response of ultra high performance 

fiber reinforced concrete beams', Procedia Engineering, 210, pp. 211-219. 

[39] EN 1992-1-1. (2004) ‘Eurocode 2: Design of concrete structures part 1-1: General rules 

and rules for buildings', European Committee for Standardization (CEN).      

[40] Wang, T. and Hsu, T.T. (2001) 'Nonlinear finite element analysis of concrete structures 

using new constitutive models', Computers & Structures, 79(32), pp. 2781-2791.  

[41] Kmiecik, P. and Kamiński, M. (2011) 'Modelling of reinforced concrete structures and 

composite structures with concrete strength degradation taken into consideration', 

Archives of civil and mechanical engineering, 11(3), pp. 623-636. 

[42] Dede, T. and Ayvaz, Y. (2009) ‘Nonlinear analysis of reinforced concrete beam 

with/without tension stiffening effect’, Materials & Design, 30(9), pp. 3846-3851. 

[43] Medina, E., Medina, J.M., Cobo, A. and Bastidas, D.M. (2015) 'Evaluation of mechanical 

and structural behavior of austenitic and duplex stainless steel reinforcements', 

Construction and Building Materials, 78, pp. 1-7.  

[44] Alih, S. and Khelil, A. (2012) 'Behavior of inoxydable steel and their performance as 

reinforcement bars in concrete beam: Experimental and nonlinear finite element 

analysis', Construction and Building Materials, 37, pp. 481-492.  

[45] Dong, J., Wang, Q. and Guan, Z. (2013) 'Structural behaviour of RC beams with external 

flexural and flexural–shear strengthening by FRP sheets', Composites Part B: 

Engineering, 44(1), pp. 604-612.  

[46] Alfano, G., De Cicco, Ph. D, Fiorenzo and Prota, A. (2011) 'Intermediate debonding 

failure of RC beams retrofitted in flexure with FRP: Experimental results versus 



34 
 

prediction of codes of practice', Journal of Composites for Construction, 16(2), pp. 185-

195.  

[47] Obaidat, Y.T., Heyden, S., Dahlblom, O., Abu-Farsakh, G. and Abdel-Jawad, Y. (2011) 

'Retrofitting of reinforced concrete beams using composite laminates', Construction and 

Building Materials, 25(2), pp. 591-597. 

[48] Gardner, L., Bu, Y., Francis, P., Baddoo, N.R., Cashell, K.A. and McCann, F. (2016) 

'Elevated temperature material properties of stainless steel reinforcing bar', 

Construction and Building Materials, 114, pp. 977-997.  

 

 


	Abstract
	1. Introduction
	2. Concrete structures with stainless steel reinforcement
	3. Design of stainless steel reinforced concrete beams
	3.1. Background to the Continuous Strength Method
	3.2. Material model
	3.3. Flexural capacity of stainless steel reinforced concrete beams
	3.3.1 Full analytical model
	3.3.2 Simplified analytical model

	4. Development of the finite element model
	4.1. Material behaviour
	4.1.1. Concrete
	4.1.2. Stainless steel reinforcement

	4.2. Boundary and loading conditions

	5. Validation of the finite model
	5.1. Experimental results for validation
	5.2. Load-displacement response
	5.3. Crack pattern

	6. Validation of the proposed analytical models
	7. Conclusions
	References

