Behaviour of Composite Beams Made Using High Strength Steel

Journal article


Shamass, R and Cashell, KA (2017). Behaviour of Composite Beams Made Using High Strength Steel. Structures. 12, pp. 88-101. https://doi.org/10.1016/j.istruc.2017.08.005
AuthorsShamass, R and Cashell, KA
Abstract

High strength steel (HSS), defined as material with a yield strength of between 460 and 700 N/mm2, is becoming increasingly popular in appropriate construction projects owing mainly to its excellent strength to weight ratio. The current paper is concerned with the use of high strength steels in steel-concrete composite beams, which is a relatively new application. In order to investigate the behaviour of these members, a finite element numerical model is developed and validated using available test data. The model represents composite beams made from HSS acting together with either solid or profiled concrete slabs. It accounts for the geometrical and material nonlinearity as well as the nonlinearity caused by the shear connectors. An extensive parametric study is conducted in order to assess the influence of the most salient parameters such as material properties, shear connection, distribution of shear connectors and beam geometry on the response, in terms of the bending capacity, stiffness, slip distribution and failure mode. The numerical results are compared with current design provisions and new reduction factors are proposed in order to obtain safe and economical design solutions.

KeywordsHigh strength steel; Composite beams; Numerical modelling; Profiled slabs; Eurocode 4
Year2017
JournalStructures
Journal citation12, pp. 88-101
PublisherElsevier
ISSN2352-0124
Digital Object Identifier (DOI)https://doi.org/10.1016/j.istruc.2017.08.005
Publication dates
Print24 Aug 2017
Publication process dates
Deposited31 Aug 2017
Accepted20 Aug 2017
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/86y25

Download files


Accepted author manuscript
Behaviour of composite structures made using high strength steel.docx
License: CC BY-NC-ND 4.0
File access level: Open

  • 42
    total views
  • 51
    total downloads
  • 6
    views this month
  • 2
    downloads this month

Export as

Related outputs

Predicting the Impact of Chemical and Physical Variability in Binary and Ternary Cementitious Blends
Limbachiya, V. and Shamass, R. (2021). Predicting the Impact of Chemical and Physical Variability in Binary and Ternary Cementitious Blends. 3rd Conference on Sustainability in Civil Engineering (CSCE’21). Capital University of Science & Technology, . Islamabad Expressway, Kahuta Road, Zone-V Islamabad 11 - 11 Aug 2021 Department of Civil Engineering at Capital University of Science and Technology.
Impact of chopped basalt fibres on the mechanical proper- ties of concrete
Shamass, R. and Limbachiya, V. (2021). Impact of chopped basalt fibres on the mechanical proper- ties of concrete. 3rd Conference on Sustainability in Civil Engineering (CSCE’21). Capital University of Science & Technology, . Islamabad Expressway, Kahuta Road, Zone-V Islamabad 11 - 11 Aug 2021 Department of Civil Engineering at Capital University of Science and Technology.
A Study On Low Cycle Fatigue Life Assessment of Notched Specimens Made of 316LN Austenitic Stainless Steel
Abarkan, I., Khamlichi, A. and Shamass, R. (2021). A Study On Low Cycle Fatigue Life Assessment of Notched Specimens Made of 316LN Austenitic Stainless Steel. Journal of Pressure Vessel Technology. 144 (2). https://doi.org/10.1115/1.4051627
Application of Artificial Neural Networks for web-post shear resistance of cellular steel beams
Limbachiya, V. and Shamass, R. (2021). Application of Artificial Neural Networks for web-post shear resistance of cellular steel beams. Thin-Walled Structures. 161, pp. 107414-107414. https://doi.org/10.1016/j.tws.2020.107414
Bond behaviour of austenitic stainless steel reinforced concrete
Rabi, M., Cashell, K.A., Shamass, R. and Desnerck, P. (2020). Bond behaviour of austenitic stainless steel reinforced concrete. Engineering Structures. 221, pp. 111027-111027. https://doi.org/10.1016/j.engstruct.2020.111027
Experimental investigation into the flexural behaviour of basalt FRP reinforced concrete members
Shamass, R and Cashell, KA (2020). Experimental investigation into the flexural behaviour of basalt FRP reinforced concrete members. Engineering Structures. 220, pp. 110950-110950. https://doi.org/10.1016/j.engstruct.2020.110950
Plastic Buckling Paradox: An Updated Review
Shamass, R (2020). Plastic Buckling Paradox: An Updated Review. Frontiers in Built Environment. 6. https://doi.org/10.3389/fbuil.2020.00035
Numerical And Analytical Analyses Of High-Strength Steel Cellular Beams: A Discerning Approach
Shamass, R. and Guarracino, F. (2020). Numerical And Analytical Analyses Of High-Strength Steel Cellular Beams: A Discerning Approach. Journal of Constructional Steel Research. 166, p. 105911. https://doi.org/10.1016/j.jcsr.2019.105911
Numerical and analytical studies of low cycle fatigue behavior of 316 LN austenitic stainless steel
Abarkan, Ikram, Shamass, Rabee, Achegaf, Zineb and Khamlichi, Abdellatif (2019). Numerical and analytical studies of low cycle fatigue behavior of 316 LN austenitic stainless steel. Journal of Pressure Vessel Technology. https://doi.org/10.1115/1.4045897
Flexural analysis and design of stainless steel reinforced concrete beams
Rabi, M., Cashell, K. and Shamass, R. (2019). Flexural analysis and design of stainless steel reinforced concrete beams. Engineering Structures. 198, p. 109432. https://doi.org/10.1016/j.engstruct.2019.109432
Analysis of concrete beams reinforced with stainless steel
Rabi, M, Cashell, KA and Shamass, R (2019). Analysis of concrete beams reinforced with stainless steel. fib Symposium 2019 - Concrete - Inovations in Materials, design and Structures. Krakow, Poland 27 - 29 May 2019 pp. 690-697
Experimental Investigation on the Behaviour of Recycled Aggregate Concrete
Kovacs, R, Shamass, R, Limbachiya, V and Datoo, M (2019). Experimental Investigation on the Behaviour of Recycled Aggregate Concrete. 5th International Conference on Sustainable Construction Materials & Technologies. Surrey 14 - 17 Jul 2019
Investigation on the Plastic Buckling Paradox for Metal Cylinders
Shamass, R, Alfano, G and Guarracino, F (2018). Investigation on the Plastic Buckling Paradox for Metal Cylinders. in: Buckling and Postbuckling Structures II London South Bank University.
A numerical investigation into the plastic buckling of circular cylinders
Shamass, R, Alfano, G and Guarracino, F (2013). A numerical investigation into the plastic buckling of circular cylinders. in: Pietraszkiewicz, W and Gorski, J (ed.) Shell Structures: Theory and Application London CRC Press.
Analysis of Stainless Steel-Concrete Composite Beams
Shamass, R and Cashell, KA (2018). Analysis of Stainless Steel-Concrete Composite Beams. Journal of Constructional Steel Research. 152, pp. 132-142. https://doi.org/10.1016/j.jcsr.2018.05.032
Bending Moment Capacity of Stainless Steel-Concrete Composite Beams
Shamass, R and Cashell, KA (2018). Bending Moment Capacity of Stainless Steel-Concrete Composite Beams. 12th International Conference on Advances in Steel-Concrete Composite Structures (ASCCS 2018). Valencia-Spain 27 - 29 Jun 2018
On Elastoplastic Buckling Analysis of Cylinders under Nonproportional Loading by Differential Quadrature Method
Shamass, R, Alfano, G and Guarracino, F (2017). On Elastoplastic Buckling Analysis of Cylinders under Nonproportional Loading by Differential Quadrature Method. International Journal of Structural Stability and Dynamics. 17 (7). https://doi.org/10.1142/S0219455417500729
On the elasto-plastic stability analysis of circular cylindrical shells
Shamass, R, Alfano, G and Guarracino, F (2016). On the elasto-plastic stability analysis of circular cylindrical shells. The International Colloquium On Stability And Ductility Of Steel Structures – SDSS 2016. Timisoara, Romania 30 May - 01 Jun 2016 pp. 639-646
Modelling post-tensioned precast concrete segmental girder bridges with dry keyed joints – preliminary results
Sejkati, E, Zhou, X, Mancini, M and Shamass, R (2016). Modelling post-tensioned precast concrete segmental girder bridges with dry keyed joints – preliminary results. 9th International Concrete Conference 2016: Environment, Efficiency and Economic Challenges for Concrete. Dundee, Scotland 04 - 06 Jul 2016
Numerical analysis of shear-off failure of keyed epoxied joints in precast concrete segmental bridges
Shamass, R, Zhou, X and Wu, Z (2016). Numerical analysis of shear-off failure of keyed epoxied joints in precast concrete segmental bridges. Journal of Bridge Engineering. 22 (1). https://doi.org/10.1061/(ASCE)BE.1943-5592.0000971
An analytical insight into the buckling paradox for circular cylindrical shells under axial and lateral loading
Shamass, R, Alfano, G and Guarracino, F (2015). An analytical insight into the buckling paradox for circular cylindrical shells under axial and lateral loading. Mathematical Problems in Engineering. 2015. https://doi.org/10.1155/2015/514267
An investigation into the plastic buckling paradox for circular cylindrical shells under non-proportional loading
Shamass, R, Alfano, G and Guarracino, F (2015). An investigation into the plastic buckling paradox for circular cylindrical shells under non-proportional loading. Thin-Walled Structures. 95, pp. 347-362. https://doi.org/10.1016/j.tws.2015.07.020
Finite-element analysis of shear-off failure of keyed dry joints in precast concrete segmental bridges
Shamass, R, Zhou, X and Alfano, G (2014). Finite-element analysis of shear-off failure of keyed dry joints in precast concrete segmental bridges. Journal of Bridge Engineering. 20 (6). https://doi.org/10.1061/(ASCE)BE.1943-5592.0000669
A numerical investigation into the plastic buckling paradox for circular cylindrical shells under axial compression
Shamass, R, Alfano, G and Guarracino, F (2014). A numerical investigation into the plastic buckling paradox for circular cylindrical shells under axial compression. Engineering Structures. 75, pp. 429-447. https://doi.org/10.1016/j.engstruct.2014.05.050