Analysis of concrete beams reinforced with stainless steel

Conference paper


Rabi, M, Cashell, KA and Shamass, R (2019). Analysis of concrete beams reinforced with stainless steel. fib Symposium 2019 - Concrete - Inovations in Materials, design and Structures. Krakow, Poland 27 - 29 May 2019 pp. 690-697
AuthorsRabi, M, Cashell, KA and Shamass, R
TypeConference paper
Abstract

© Federation Internationale du Beton (fib) - International Federation for Structural Concrete, 2019. Stainless steel has been exploited widely in the construction industry and is used in a range of applications owing to its characteristics in terms of corrosion resistance, long life cycle, formability, durability and recyclability. The stress-strain behaviour of stainless steel is different from that of carbon steel. Carbon steel demonstrates linear-elastic behaviour with a clear yield point followed by plastic deformation with little strain hardening. On the other hand, stainless steel exhibits a more nonlinear yet continuous stress-strain response without a clearly defined yield point. Currently, the vast majority of global design standards, such as Eurocode 2, do not fully exploit the ductility and strain hardening characteristics of stainless steel in the plastic design of reinforced concrete structures. This assumption leads to very conservative capacity predictions since stainless steel exhibits a high degree of strain hardening. Therefore, the aim of this paper is to study the design of stainless steel reinforced concrete beams, and to investigate the impact that neglecting strain hardening has on the load-bearing capacity. Towards this end, a finite element model has been developed and validated using experimental data available in the literature and is described herein. Then, the model is used to investigate the behaviour of concrete beams with stainless steel reinforcement and to study the influence of the most salient parameters.

Year2019
JournalProceedings of the fib Symposium 2019: Concrete - Innovations in Materials, Design and Structures
Accepted author manuscript
License
CC BY 4.0
File Access Level
Open
Publication dates
Print27 May 2019
Publication process dates
Deposited16 Jul 2019
Accepted01 Jan 2019
ISBN9782940643004
Page range690-697
Permalink -

https://openresearch.lsbu.ac.uk/item/86677

  • 9
    total views
  • 4
    total downloads
  • 5
    views this month
  • 4
    downloads this month

Related outputs

Experimental Investigation on the Behaviour of Recycled Aggregate Concrete
Kovacs, R, Shamass, R, Limbachiya, V and Datoo, M (2019). Experimental Investigation on the Behaviour of Recycled Aggregate Concrete. 5th International Conference on Sustainable Construction Materials & Technologies. Surrey 14 - 17 Jul 2019
Investigation on the Plastic Buckling Paradox for Metal Cylinders
Shamass, R, Alfano, G and Guarracino, F (2018). Investigation on the Plastic Buckling Paradox for Metal Cylinders. in: Buckling and Postbuckling Structures II London South Bank University.
Analysis of Stainless Steel-Concrete Composite Beams
Shamass, R and Cashell, KA (2018). Analysis of Stainless Steel-Concrete Composite Beams. Journal of Constructional Steel Research.
Bending Moment Capacity of Stainless Steel-Concrete Composite Beams
Shamass, R and Cashell, KA (2018). Bending Moment Capacity of Stainless Steel-Concrete Composite Beams. 12th International Conference on Advances in Steel-Concrete Composite Structures (ASCCS 2018). Valencia-Spain 27 - 29 Jun 2018
A numerical investigation into the plastic buckling of circular cylinders
Shamass, R, Alfano, G and Guarracino, F (2013). A numerical investigation into the plastic buckling of circular cylinders. in: Pietraszkiewicz, W and Gorski, J (ed.) Shell Structures: Theory and Application London CRC Press.
Finite-element analysis of shear-off failure of keyed dry joints in precast concrete segmental bridges
Shamass, R, Zhou, X and Alfano, G (2014). Finite-element analysis of shear-off failure of keyed dry joints in precast concrete segmental bridges. Journal of Bridge Engineering. 20 (6).
A numerical investigation into the plastic buckling paradox for circular cylindrical shells under axial compression
Shamass, R, Alfano, G and Guarracino, F (2014). A numerical investigation into the plastic buckling paradox for circular cylindrical shells under axial compression. Engineering Structures. 75, pp. 429-447.
An analytical insight into the buckling paradox for circular cylindrical shells under axial and lateral loading
Shamass, R, Alfano, G and Guarracino, F (2015). An analytical insight into the buckling paradox for circular cylindrical shells under axial and lateral loading. Mathematical Problems in Engineering. 2015.
An investigation into the plastic buckling paradox for circular cylindrical shells under non-proportional loading
Shamass, R, Alfano, G and Guarracino, F (2015). An investigation into the plastic buckling paradox for circular cylindrical shells under non-proportional loading. Thin-Walled Structures. 95, pp. 347-362.
On the elasto-plastic stability analysis of circular cylindrical shells
Shamass, R, Alfano, G and Guarracino, F (2016). On the elasto-plastic stability analysis of circular cylindrical shells. The International Colloquium On Stability And Ductility Of Steel Structures – SDSS 2016. Timisoara, Romania 30 May - 01 Jun 2016 London South Bank University. pp. 639-646
Modelling post-tensioned precast concrete segmental girder bridges with dry keyed joints – preliminary results
Sejkati, E, Zhou, X, Mancini, M and Shamass, R (2016). Modelling post-tensioned precast concrete segmental girder bridges with dry keyed joints – preliminary results. 9th International Concrete Conference 2016: Environment, Efficiency and Economic Challenges for Concrete. Dundee, Scotland 04 - 06 Jul 2016 London South Bank University.
Numerical analysis of shear-off failure of keyed epoxied joints in precast concrete segmental bridges
Shamass, R, Zhou, X and Wu, Z (2016). Numerical analysis of shear-off failure of keyed epoxied joints in precast concrete segmental bridges. Journal of Bridge Engineering. 22 (1).
On Elastoplastic Buckling Analysis of Cylinders under Nonproportional Loading by Differential Quadrature Method
Shamass, R, Alfano, G and Guarracino, F (2017). On Elastoplastic Buckling Analysis of Cylinders under Nonproportional Loading by Differential Quadrature Method. International Journal of Structural Stability and Dynamics. 17 (7).
Behaviour of Composite Beams Made Using High Strength Steel
Shamass, R and Cashell, KA (2017). Behaviour of Composite Beams Made Using High Strength Steel. Structures. 12, pp. 88-101.