Thermal comfort and IAQ analysis of a decentralized DOAS system coupled with radiant cooling for the tropics

Journal article


Mahmoudi Saber, E., Iyengar, R, Mast, M, Meggers, F, Tham, KW and Leibundgut, H (2014). Thermal comfort and IAQ analysis of a decentralized DOAS system coupled with radiant cooling for the tropics. Building and Environment. 82, pp. 361-370. https://doi.org/10.1016/j.buildenv.2014.09.001
AuthorsMahmoudi Saber, E., Iyengar, R, Mast, M, Meggers, F, Tham, KW and Leibundgut, H
Abstract

The deployment of low exergy concepts in buildings, which promotes high temperature cooling HVAC systems introduces alternative solutions in the tropical climate. This study evaluates the performance of a decentralized dedicated outdoor air system combined with a radiant cooling system (decentralized DOAS-RCS) in terms of occupant thermal comfort and indoor air quality for the tropical context. Different sets of operational scenarios (experiments) have been conducted in the BubbleZERO laboratory to realize the impact of system related parameters like ventilation rate and supply chilled water temperature on thermal comfort and indoor air quality. The results show that supply chilled water temperature and space cooling load have strong impacts respectively on the capacity of decentralized units and cooling panel, which consequently influence indoor air condition. Indoor air was predicted to be in comfort range (−0.2 < PMV < 0.2) only at specific periods of the day and an automatic control was required to modulate the system under various indoor and outdoor conditions. Main challenges of implementing DDOAS coupled with radiant cooling in the tropics include the condensation risk on the radiant panels, non-uniformity of panel surface temperature and low air movement inside the space.

Keywords1201 Architecture; 1202 Building; 0502 Environmental Science And Management; Building & Construction
Year2014
JournalBuilding and Environment
Journal citation82, pp. 361-370
PublisherElsevier
ISSN0360-1323
Digital Object Identifier (DOI)https://doi.org/10.1016/j.buildenv.2014.09.001
Publication dates
Print15 Sep 2014
Publication process dates
Deposited06 Dec 2017
Accepted01 Sep 2014
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/877q4

Download files


Accepted author manuscript
Saber et al. - Thermal comfort and IAQ analysis of a decentralize.pdf
License: CC BY-NC-ND 4.0
File access level: Open

  • 91
    total views
  • 394
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Review of Intelligent Control Systems for Natural Ventilation as Passive Cooling Strategy for UK Buildings and Similar Climatic Conditions
Mahmoudi Saber, E., Chaer, I., Gillich, A. and Ekpeti, B. (2021). Review of Intelligent Control Systems for Natural Ventilation as Passive Cooling Strategy for UK Buildings and Similar Climatic Conditions. Energies. 14 (15), p. e4388. https://doi.org/10.3390/en14154388
Reducing carbon footprint and cooling demandin arid climates using an integrated hybrid ventilation and photovoltaic approach
Mahmoudi, S. E. and Elnabaw, M. H. (2021). Reducing carbon footprint and cooling demandin arid climates using an integrated hybrid ventilation and photovoltaic approach. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-021-01571-1
Performance prediction and evaluation on the first balanced energy networks (BEN) part I: BEN and building internal factors
Wang, Y, Gillich, A, Liu, D, Mahmoudi Saber, E., Yebiyo, M, Kang, R, Ford, A and Hewitt, M (2021). Performance prediction and evaluation on the first balanced energy networks (BEN) part I: BEN and building internal factors. Energy. 221, pp. 119797-119797. https://doi.org/10.1016/j.energy.2021.119797
Model predictive control of non-domestic heating using genetic programming dynamic models
Mahmoudi Saber, E. (2020). Model predictive control of non-domestic heating using genetic programming dynamic models. Applied Soft Computing . 97 (B), pp. 106695-106695. https://doi.org/10.1016/j.asoc.2020.106695
GPML: an XML-based standard for the interchange of genetic programming trees
Esmail Saber (2019). GPML: an XML-based standard for the interchange of genetic programming trees. Genetic Programming and Evolvable Machines . 11. https://doi.org/10.1007/s10710-019-09370-4
Limits and uncertainty for energy efficiency in the UK housing stock
Gillich, A., Mahmoudi Saber, E. and Mohareb, E. (2019). Limits and uncertainty for energy efficiency in the UK housing stock. Energy Policy. 133. https://doi.org/10.1016/j.enpol.2019.110889
Performance evaluation of damper control settings for operation of multiple-zone variable air volume reheat system in different building applications and climate types
Mahmoudi Saber, E. (2017). Performance evaluation of damper control settings for operation of multiple-zone variable air volume reheat system in different building applications and climate types. Building Simulation. 10 (5), pp. 687-696. https://doi.org/10.1007/s12273-017-0353-4
Adaptable cooling coil performance during part loads in the tropics - A computational evaluation
Sekhar, C, Anand, P, Schiavon, S, Tham, KW, Cheong, D and Mahmoudi Saber, E. (2017). Adaptable cooling coil performance during part loads in the tropics - A computational evaluation. Energy and Buildings. 159, pp. 148-163. https://doi.org/10.1016/j.enbuild.2017.10.086
A review of high temperature cooling systems in tropical buildings
Mahmoudi Saber, E., Tham, KW and Leibundgut, H (2016). A review of high temperature cooling systems in tropical buildings. Building and Environment. 96, pp. 237-249. https://doi.org/10.1016/j.buildenv.2015.11.029
HARNESSING DAYLIGHTING AND SOLAR GAINS AS SUSTAINABLE ARCHITECTURAL DESIGNMETHODSIN MIXED-USE DEVELOPMENTS IN LAGOS, NIGERIA.
Mahmoudi Saber, E., Chaer, I. and Ekpeti, B. (2015). HARNESSING DAYLIGHTING AND SOLAR GAINS AS SUSTAINABLE ARCHITECTURAL DESIGNMETHODSIN MIXED-USE DEVELOPMENTS IN LAGOS, NIGERIA. CIBSE Technical Symposium. London 16 - 17 Apr 2015 CIBSE.
Ventilation effectiveness and contaminant distribution in an occupied space conditioned with low exergy ventilation technologies in the tropics
Mahmoudi Saber, E., Mast, M, Tham, KW and Leibundgut, H (2015). Ventilation effectiveness and contaminant distribution in an occupied space conditioned with low exergy ventilation technologies in the tropics. Healthy Buildings 2015 Europe. Eindhoven, Netherlands 18 - 20 May 2015 London South Bank University.
PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings
Mahmoudi Saber, E., Lee, SE, Manthapuri, S, Yi, W and Deb, C (2014). PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings. Energy. 71, pp. 588-595. https://doi.org/10.1016/j.energy.2014.04.115
Numerical Modelling of an Indoor Space Conditioned with Low Exergy Cooling Technologies in the Tropics
Mahmoudi Saber, E., Mast, M, Tham, KW and Leibundgut, H (2014). Numerical Modelling of an Indoor Space Conditioned with Low Exergy Cooling Technologies in the Tropics. 13th International Conference on Indoor Air Quality and Climate. Hong Kong 07 - 12 Jul 2014 London South Bank University.
Stuck in a stack—Temperature measurements of the microclimate around split type condensing units in a high rise building in Singapore
Bruelisauer, M, Meggers, F, Mahmoudi Saber, E., Li, C and Leibundgut, H (2013). Stuck in a stack—Temperature measurements of the microclimate around split type condensing units in a high rise building in Singapore. Energy and Buildings. 71, pp. 28-37. https://doi.org/10.1016/j.enbuild.2013.11.056