A review of high temperature cooling systems in tropical buildings

Journal article


Mahmoudi Saber, E., Tham, KW and Leibundgut, H (2016). A review of high temperature cooling systems in tropical buildings. Building and Environment. 96, pp. 237-249.
AuthorsMahmoudi Saber, E., Tham, KW and Leibundgut, H
Abstract

High temperature cooling is gaining more attention in commercial buildings of the tropical climates where temperature and humidity is high all year round. In this air-water system, radiant-convective cooling is provided into conditioned space through using higher chilled water temperature compared to conventional all air system. Radiant cooling panel, radiant slab cooling, passive/active chilled beams are the main design strategies for implementing this concept into buildings. This paper reviewed and summarized the recent published papers on applications of high temperature cooling systems in tropical buildings. The reported outcomes and conclusions from these studies were extracted and discussed to get a better understanding on overall performance of the systems which are designed based on this concept. The potential energy saving of this strategy was estimated to be in the range of 6–41% depending on design strategies and operational scenarios of system. Comfortable and healthy indoor environment is achievable for this design when a parallel air system satisfies latent load and ventilation requirement of space. Low air movement was the only reported comfort concern for this design since locally acclimatized occupants in the tropics prefer higher air movement compared to dry and temperate climates. Regarding the parallel air system strategy, DOAS with ceiling supply-ceiling exhaust is suggested to be the best choice to be coupled with high temperature cooling system. In addition, incorporation of energy recovery systems like membrane based air to air heat exchanger into DOAS can improve the overall efficiency of this design.

Keywords1201 Architecture; 1202 Building; 0502 Environmental Science And Management; Building & Construction
Year2016
JournalBuilding and Environment
Journal citation96, pp. 237-249
PublisherLondon South Bank University
ISSN0360-1323
Digital Object Identifier (DOI)doi:10.1016/j.buildenv.2015.11.029
Publication dates
Print01 Feb 2016
Publication process dates
Deposited11 Dec 2017
Accepted26 Nov 2015
Accepted author manuscript
License
CC BY-NC-ND 4.0
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/87523

  • 2
    total views
  • 42
    total downloads
  • 1
    views this month
  • 6
    downloads this month

Related outputs

Limits and uncertainty for energy efficiency in the UK housing stock
Gillich, A., Mahmoudi Saber, E. and Mohareb, E. (2019). Limits and uncertainty for energy efficiency in the UK housing stock. Energy Policy. 133.
Performance evaluation of damper control settings for operation of multiple-zone variable air volume reheat system in different building applications and climate types
Mahmoudi Saber, E. (2017). Performance evaluation of damper control settings for operation of multiple-zone variable air volume reheat system in different building applications and climate types. Building Simulation. 10 (5), pp. 687-696.
Adaptable cooling coil performance during part loads in the tropics - A computational evaluation
Sekhar, C, Anand, P, Schiavon, S, Tham, KW, Cheong, D and Mahmoudi Saber, E. (2017). Adaptable cooling coil performance during part loads in the tropics - A computational evaluation. Energy and Buildings. 159, pp. 148-163.
Ventilation effectiveness and contaminant distribution in an occupied space conditioned with low exergy ventilation technologies in the tropics
Mahmoudi Saber, E., Mast, M, Tham, KW and Leibundgut, H (2015). Ventilation effectiveness and contaminant distribution in an occupied space conditioned with low exergy ventilation technologies in the tropics. Healthy Buildings 2015 Europe. Eindhoven, Netherlands 18 - 20 May 2015 London South Bank University.
PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings
Mahmoudi Saber, E., Lee, SE, Manthapuri, S, Yi, W and Deb, C (2014). PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings. Energy. 71, pp. 588-595.
Numerical Modelling of an Indoor Space Conditioned with Low Exergy Cooling Technologies in the Tropics
Mahmoudi Saber, E., Mast, M, Tham, KW and Leibundgut, H (2014). Numerical Modelling of an Indoor Space Conditioned with Low Exergy Cooling Technologies in the Tropics. 13th International Conference on Indoor Air Quality and Climate. Hong Kong 07 - 12 Jul 2014 London South Bank University.
Thermal comfort and IAQ analysis of a decentralized DOAS system coupled with radiant cooling for the tropics
Mahmoudi Saber, E., Iyengar, R, Mast, M, Meggers, F, Tham, KW and Leibundgut, H (2014). Thermal comfort and IAQ analysis of a decentralized DOAS system coupled with radiant cooling for the tropics. Building and Environment. 82, pp. 361-370.
Stuck in a stack—Temperature measurements of the microclimate around split type condensing units in a high rise building in Singapore
Bruelisauer, M, Meggers, F, Mahmoudi Saber, E., Li, C and Leibundgut, H (2013). Stuck in a stack—Temperature measurements of the microclimate around split type condensing units in a high rise building in Singapore. Energy and Buildings. 71, pp. 28-37.