Performance evaluation of damper control settings for operation of multiple-zone variable air volume reheat system in different building applications and climate types

Journal article


Mahmoudi Saber, E. (2017). Performance evaluation of damper control settings for operation of multiple-zone variable air volume reheat system in different building applications and climate types. Building Simulation. 10 (5), pp. 687-696. https://doi.org/10.1007/s12273-017-0353-4
AuthorsMahmoudi Saber, E.
Abstract

This is a post-peer-review, pre-copyedit version of an article published in Building Simulation. The final authenticated version is available online at: http://dx.doi.org/10.1007/s12273-017-0353-4

Choosing the right control strategies is an important task for effective operation of variable air volume reheat (VAVR) system in commercial buildings. In this design, dampers’ position inside air terminal units (ATUs) are modulated to adjust the amount of air supply volume based on thermal zones’ cooling or heating demand. A minimum air flow fraction (MAFF) is set for damper settings of ATUs to avoid under-ventilation problem in thermal zones. This study investigated the impact of MAFF value on various performance aspects of multiple-zone VAVR design in different building applications and climate types. A five-storey commercial building for three applications of school, office and retail in four climate types of tropical monsoon, hot desert, Mediterranean and humid continental have been simulated in EnergyPlus building simulation software. The results of simulations have shown that lowering MAFF value in ATUs would reduce the required reheat coil energy to maintain precise air supply temperature at part load cooling scenarios. Nonetheless, this reduction could have some implications on thermal comfort and indoor air quality level of thermal zones in a multiple-zone arrangement. It was concluded that in general it is an energy efficient control strategy to keep MAFF value to as low as 0.1 for high ventilation rate spaces like classrooms in school buildings (except for hot desert climate). On the other hand, it is advisable to not reduce MAFF value below 0.3 for low ventilation rate spaces like office areas to avoid any air quality issues in thermal zones.

Year2017
JournalBuilding Simulation
Journal citation10 (5), pp. 687-696
PublisherSpringer
ISSN1996-3599
Digital Object Identifier (DOI)https://doi.org/10.1007/s12273-017-0353-4
Publication dates
Print27 Feb 2017
Publication process dates
Deposited06 Dec 2017
Accepted27 Feb 2017
Accepted author manuscript
License
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/87055

Download files


Accepted author manuscript
BUIL-D-16-00228_R1.pdf
License: CC BY 4.0
File access level: Open

  • 93
    total views
  • 147
    total downloads
  • 1
    views this month
  • 1
    downloads this month

Export as

Related outputs

Review of Intelligent Control Systems for Natural Ventilation as Passive Cooling Strategy for UK Buildings and Similar Climatic Conditions
Mahmoudi Saber, E., Chaer, I., Gillich, A. and Ekpeti, B. (2021). Review of Intelligent Control Systems for Natural Ventilation as Passive Cooling Strategy for UK Buildings and Similar Climatic Conditions. Energies. 14 (15), p. e4388. https://doi.org/10.3390/en14154388
Reducing carbon footprint and cooling demandin arid climates using an integrated hybrid ventilation and photovoltaic approach
Mahmoudi, S. E. and Elnabaw, M. H. (2021). Reducing carbon footprint and cooling demandin arid climates using an integrated hybrid ventilation and photovoltaic approach. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-021-01571-1
Performance prediction and evaluation on the first balanced energy networks (BEN) part I: BEN and building internal factors
Wang, Y, Gillich, A, Liu, D, Mahmoudi Saber, E., Yebiyo, M, Kang, R, Ford, A and Hewitt, M (2021). Performance prediction and evaluation on the first balanced energy networks (BEN) part I: BEN and building internal factors. Energy. 221, pp. 119797-119797. https://doi.org/10.1016/j.energy.2021.119797
Model predictive control of non-domestic heating using genetic programming dynamic models
Mahmoudi Saber, E. (2020). Model predictive control of non-domestic heating using genetic programming dynamic models. Applied Soft Computing . 97 (B), pp. 106695-106695. https://doi.org/10.1016/j.asoc.2020.106695
GPML: an XML-based standard for the interchange of genetic programming trees
Esmail Saber (2019). GPML: an XML-based standard for the interchange of genetic programming trees. Genetic Programming and Evolvable Machines . 11. https://doi.org/10.1007/s10710-019-09370-4
Limits and uncertainty for energy efficiency in the UK housing stock
Gillich, A., Mahmoudi Saber, E. and Mohareb, E. (2019). Limits and uncertainty for energy efficiency in the UK housing stock. Energy Policy. 133. https://doi.org/10.1016/j.enpol.2019.110889
Adaptable cooling coil performance during part loads in the tropics - A computational evaluation
Sekhar, C, Anand, P, Schiavon, S, Tham, KW, Cheong, D and Mahmoudi Saber, E. (2017). Adaptable cooling coil performance during part loads in the tropics - A computational evaluation. Energy and Buildings. 159, pp. 148-163. https://doi.org/10.1016/j.enbuild.2017.10.086
A review of high temperature cooling systems in tropical buildings
Mahmoudi Saber, E., Tham, KW and Leibundgut, H (2016). A review of high temperature cooling systems in tropical buildings. Building and Environment. 96, pp. 237-249. https://doi.org/10.1016/j.buildenv.2015.11.029
Performance evaluation of low exergy systems depicting decentralized dedicated outdoor air system coupled with radiant cooling in the tropics
Mahmoudi Saber, E. (2016). Performance evaluation of low exergy systems depicting decentralized dedicated outdoor air system coupled with radiant cooling in the tropics. PhD Thesis National University of Singapore Department of Building
HARNESSING DAYLIGHTING AND SOLAR GAINS AS SUSTAINABLE ARCHITECTURAL DESIGNMETHODSIN MIXED-USE DEVELOPMENTS IN LAGOS, NIGERIA.
Mahmoudi Saber, E., Chaer, I. and Ekpeti, B. (2015). HARNESSING DAYLIGHTING AND SOLAR GAINS AS SUSTAINABLE ARCHITECTURAL DESIGNMETHODSIN MIXED-USE DEVELOPMENTS IN LAGOS, NIGERIA. CIBSE Technical Symposium. London 16 - 17 Apr 2015 CIBSE.
Ventilation effectiveness and contaminant distribution in an occupied space conditioned with low exergy ventilation technologies in the tropics
Mahmoudi Saber, E., Mast, M, Tham, KW and Leibundgut, H (2015). Ventilation effectiveness and contaminant distribution in an occupied space conditioned with low exergy ventilation technologies in the tropics. Healthy Buildings 2015 Europe. Eindhoven, Netherlands 18 - 20 May 2015 London South Bank University.
PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings
Mahmoudi Saber, E., Lee, SE, Manthapuri, S, Yi, W and Deb, C (2014). PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings. Energy. 71, pp. 588-595. https://doi.org/10.1016/j.energy.2014.04.115
Numerical Modelling of an Indoor Space Conditioned with Low Exergy Cooling Technologies in the Tropics
Mahmoudi Saber, E., Mast, M, Tham, KW and Leibundgut, H (2014). Numerical Modelling of an Indoor Space Conditioned with Low Exergy Cooling Technologies in the Tropics. 13th International Conference on Indoor Air Quality and Climate. Hong Kong 07 - 12 Jul 2014 London South Bank University.
Thermal comfort and IAQ analysis of a decentralized DOAS system coupled with radiant cooling for the tropics
Mahmoudi Saber, E., Iyengar, R, Mast, M, Meggers, F, Tham, KW and Leibundgut, H (2014). Thermal comfort and IAQ analysis of a decentralized DOAS system coupled with radiant cooling for the tropics. Building and Environment. 82, pp. 361-370. https://doi.org/10.1016/j.buildenv.2014.09.001
Stuck in a stack—Temperature measurements of the microclimate around split type condensing units in a high rise building in Singapore
Bruelisauer, M, Meggers, F, Mahmoudi Saber, E., Li, C and Leibundgut, H (2013). Stuck in a stack—Temperature measurements of the microclimate around split type condensing units in a high rise building in Singapore. Energy and Buildings. 71, pp. 28-37. https://doi.org/10.1016/j.enbuild.2013.11.056