Behaviour of ultrasonic waves in porous rigid materials: an anisotropic Biot-Attenborough model

Journal article


Aygun, H. and Barlow, C (2015). Behaviour of ultrasonic waves in porous rigid materials: an anisotropic Biot-Attenborough model. Journal of Physics: Conference Series. 581, pp. 1-12.
AuthorsAygun, H. and Barlow, C
Abstract

The anisotropic pore structure and elasticity of cancellous bone cause wave speeds and attenuation in cancellous bone to vary with angle. Anisotropy has been introduced into Biot theory by using an empirical expression for the angle-and porosity-dependence of tortuosity. Predictions of a modified anisotropic Biot–Attenborough theory are compared with measurements of pulses centred on 100 kHz and 1 MHz transmitted through water-saturated porous samples. The samples are 13 times larger than the original bone samples. Despite the expected effects of scattering, which is neglected in the theory, at 100 kHz the predicted and measured transmitted waveforms are similar.

KeywordsBone, Biot theory, ultrasound, anisotropic materials
Year2015
JournalJournal of Physics: Conference Series
Journal citation581, pp. 1-12
PublisherInstitute of Physics (IoP)
ISSN1742-6596
Digital Object Identifier (DOI)doi:10.1088/1742-6596/581/1/012006
Publication dates
Print29 Jan 2015
Publication process dates
Deposited30 Nov 2017
Accepted29 Jan 2015
Accepted author manuscript
License
CC BY
File Access Level
Open
Permalink -

https://openresearch.lsbu.ac.uk/item/87727

  • 0
    total views
  • 5
    total downloads
  • 0
    views this month
  • 4
    downloads this month

Related outputs

Determining mechanical parameters of the bone using a vibro-acoustic method
Aygun, H (2019). Determining mechanical parameters of the bone using a vibro-acoustic method. Acoustics 2019. Milton Keynes, UK 13 - 14 May 2019
Investigation of acoustical and structural parameters of recycled glass bead composite panels
Aygun, H and McCann, F (2019). Investigation of acoustical and structural parameters of recycled glass bead composite panels. Inter.Noise 2019 - the 48th International Congress and Exhibition on Noise Control Engineering. Madrid, Spain 17 - 21 Jun 2019
Experimental validation of deep-subwavelength by diffsuion by acoustic metadiiffusers
Dance, S., Ballestero, E., Aygun, H., Jimenez, N., Groby, J-P. and Romero-Garcia, V. (2019). Experimental validation of deep-subwavelength by diffsuion by acoustic metadiiffusers. Applied Physics Letters. 115 (8).
A viscoelastic system for determining acoustical and mechanical parameters of the bone
Aygun, H. (2019). A viscoelastic system for determining acoustical and mechanical parameters of the bone. Applied Acoustics. 150, pp. 70-75.
Tracheal Sound Acquisition Using Laser Doppler Vibrometer
Aygun, H. and Apolskis, A (2018). Tracheal Sound Acquisition Using Laser Doppler Vibrometer. ACOUSTICS 2018 - ACWSTEG 2018. City Hall, Cathay's Park, Cardiff 23 - 24 Apr 2018 London South Bank University.
Characterization of Acoustical Properties of Felt and Carpet Made of Natural and Environmentally Friendly Materials
Aygun, H. (2017). Characterization of Acoustical Properties of Felt and Carpet Made of Natural and Environmentally Friendly Materials. Open Journal of Acoustics. 7 (2), pp. 27-38.
Why research informed teaching (RIT) in acoustics education: How can we embed research in acoustics education to improve students' learning?
Aygun, H. (2017). Why research informed teaching (RIT) in acoustics education: How can we embed research in acoustics education to improve students' learning? 24th International Congress on Sound and Vibration. London, UK 23 - 27 Jul 2017 London South Bank University.
Investigation of acoustic performance of compressed wool carpets
Aygun, H. (2016). Investigation of acoustic performance of compressed wool carpets. 23rd International Congress on Sound and Vibration. Athens, Greece 10 - 14 Jul 2016 London South Bank University.
Ultrasonic wave propagation through porous ceramics at different angles of propagation
Aygun, H. and Barlow, C (2014). Ultrasonic wave propagation through porous ceramics at different angles of propagation. Applied Acoustics. 88 (0), pp. 6-11.
Behaviour of acoustic waves in a duct with Helmholtz resonator in presence of a temperature gradient
Aygun, H. and Rubini, P (2014). Behaviour of acoustic waves in a duct with Helmholtz resonator in presence of a temperature gradient. Institute of Acoustics 40th Anniversary Conference. NEC, Birmingham, UK 15 - 16 Oct 2014 http://toc.proceedings.com/24268webtoc.pdf Proceedings of the Institute of Acoustics Volume 36 Pt.3.
A Review of the State of Art in Applying Biot Theory to Acoustic Propagation through the Bone
Aygun, H., Attenborough, K and Postema, M (2014). A Review of the State of Art in Applying Biot Theory to Acoustic Propagation through the Bone. Open Access Library Journal. 1 (9), pp. 1-12.